Westdc Logo

HiWATER: Dataset of Hydrometeorological observation network (large aperture scintillometerof A’rou Superstation) Chinese Version


This dataset contains the flux measurements from the large aperture scintillometer (LAS) at A’rou Superstation in the hydrometeorological observation network of Heihe River Basin between 14 October, 2012, and 31 December, 2013. There were two types of LASs at A’rou Superstation: German BLS450 and China zzlas. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. Zzlas has been in use since 14 October, 2012, and the observation period of BLS450 was from 9 August to 10 December, 2013. The site (north: 100.467° E, 38.050° N; south: 100.450° E, 38.033° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled at 5 Hz and 1 Hz intervals for BLS450 and zzlas, respectively, and then averaged over 1 min.

The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000; zzlas: Demod>-20 mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively.

Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the drift of the zzlas signal, data from 10 November to 23 November, 2012, and 14 March to 10 April, 2013, were excluded. Due to the LAS tower’s lean, the data from 10 April to 31 May, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red.

For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.


CitationsHelp

  1. Liu SM, Li X, Xu ZW, Che T, Xiao Q, Ma MG, Liu QH, Jin R, Guo JW, Wang LX, Wang WZ, Qi Y, Li HY, Xu TR, Ran YH, Hu XL, Shi SJ, Zhu ZL, Tan JL, Zhang Y, Ren ZG. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone Journal, 2018, 17:180072. doi:10.2136/vzj2018.04.0072DetailDownload
  2. Liu SM, Xu ZW, Wang WZ, Bai J, Jia Z, Zhu M, Wang JM. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 2011, 15(4): 1291-1306. doi:10.5194/hess-15-1291-2011.DetailDownload

Related Publications (Recommended by Author)

  1. Xu ZW, Ma YF, Liu SM, Shi SJ, Wang JM. Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 2017, 56: 127-140, doi: 10.1175/JAMC-D-16-0096.1.Detail Download
  2. Liu SM, Xu ZW, Song LS, Zhao QY, Ge Y, Xu TR, Ma YF, Zhu ZL, Jia ZZ, Zhang F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 2016, 230-231, 97-113. doi:10.1016/j.agrformet.2016.04.008.Detail Download
  3. Song LS, Liu SM, Kustas W P, Zhou J, Xu ZW, Xia T, Li MS. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 2016, doi:10.1016/j.agrformet.2016.01.005.Detail Download
  4. Song LS , Kustas WP, Liu SM, Colaizzi PD, Nieto H, Xu ZW, Ma YF, Li MS, Xu TR, Agam N, Tolk JA, Evett SR. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 2016, doi:10.1016/j.jhydrol.2016.06.034.Detail Download
  5. Zhang Q, Sun R, Jiang GQ, Xu ZW, Liu SM. Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 2016, doi: 10.1016/j.agrformet.2016.02.019.Detail Download
  6. Xu TR, Bateni S.M., Liang SL. Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 2015, 12 (1), 68-72.doi:10.1109/LGRS.2014.2326180Detail Download
  7. Wang JM, Zhuang JX, Wang WZ, Liu SM, Xu ZW. Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (2), 259-263. doi:10.1109/LGRS.2014.2334703Detail Download
  8. Song LS, Liu SM, Zhang X, Zhou J, Li MS. Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (2), 334-338. doi:10.1109/LGRS.2014.2339360Detail Download
  9. Qiao C, Sun R, Xu ZW, Zhang L, Liu LY, Hao LY, Jiang GQ. A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China. IEEE Geoscience and Remote Sensing   Letters, 2015, 12(2), 369-373. doi:10.1109/LGRS.2014.2342219Detail Download
  10. Zhu ZL, Tan L, Gao SG, Jiao QS. Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3), 472-476.Detail Download
  11. Ge Y, Liang YZ, Wang JH, Zhao QY, Liu SM. Upscaling sensible heat fluxes with area-to-area regression kriging.  IEEE Geoscience and Remote Sensing Letters, 2015, 12(3), 656-660.doi:10.1109/LGRS.2014.2355871Detail Download
  12. Ma YF, Liu SM, Zhang F, Zhou J, Jia ZZ. Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3), 671-675. doi:10.1109/LGRS.2014.2356652Detail Download
  13. Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., Song, L.. Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5), 943-947. doi:10.1109/LGRS.2014.2368580Detail Download
  14. Xu TR, Liu SM, Xu ZW, Liang SL, Xu L. A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci., 2015, 58(2), 211-230, doi: 10.1007/s11430-014-4964-7.Detail Download
  15. Xu T, Liu S, Xu L, Chen Y, Jia Z, Xu Z, Nielson J. Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing. 2015, 7(3):3400-3425. doi:10.3390/rs70303400Detail Download
  16. Zhang L, Sun R, Xu ZW, Qiao C, Jiang GQ. Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLoS ONE, 2015, 10(3). doi:10.1371/journal.pone.0120660Detail Download
  17. Song LS, Liu SM, William Kustas P, Zhou J, Ma YF. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 2015, 7(5):5828-5848. doi:10.3390/rs70505828Detail Download
  18. Hu MG, Wang JH, Ge Y, Liu MX, Liu SM, Xu ZW, Xu TR. Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere 2015, 6, 1032-1044.Detail Download
  19. Zhou J, Li MS, Liu SM, Jia ZZ, Ma YF. Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 2015, 7, 7126-7156.Detail Download
  20. Gao SG, Zhu ZL, Liu SM, Jin R, Yang GC, Tan L. Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2014, 32, 54-66. doi:10.1016/j.jag.2014.03.003Detail Download
  21. Li Y, Sun R, Liu SM. Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. SCIENCE CHINA, 2014,doi:10.1007/s11430-014-4909-1Detail Download
  22. Xu ZW, Liu SM, Li X, Shi SJ, Wang JM, Zhu ZL, Xu TR, Wang WZ, Ma MG. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research, 2013,118, 13140-13157, doi:10.1002/2013JD020260.Detail Download
  23. Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 2013, 487, 24-38.Detail Download

General introduction of HiWATER

  1. Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1.Detail | Download

Limitations

The dataset is generated from the "Heihe Watershed Allied Telemetry Experimental Research (HiWATER)". User must have a clear statement in the article of the original data source and cite the dataset and papers in the Citation section.

Fund

  • National Natural Science Foundation of China (No. 91125002)

Online Resources



InformationFile list

  • File Format: *.xlsx
  • Size: 0.72 MB
  • Downloaded: 40
  • Viewed: 7231
  • Temporal Range: 2012-10-14 to 2013-12-31

Google Maps


Contacts


  • Last update: 2016-07-04
  • Download Metadata: Adobe PDF OpenOffice odt Word doc XML
  • Versions: 11