Westdc Logo

WATER: Dataset of automatic meteorological observations at the Linze grassland station Chinese Version


The dataset of automatic meteorological observations was obtained at the Linze grassland station (E100 °04'/N39°15', 1394m) from Oct. 1, 2007 to Oct. 27, 2008. The landscape is dominated by wetland and saline land.

Observation items were multilayer (2m, 4m and 10m) of the wind speed and direction, air temperature and humidity, air pressure, precipitation, four components of radiation, the surface temperature, the soil temperature (5cm, 10cm, 20cm and 40cm), and the multilayer soil temperature (2cm, 5cm and 10cm).

The dataset was released at different levels: Level1 were transformed raw data and stored in .csv month by month; Level2 were processed data after correction and quality control. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.


CitationHelp

Data Citation Wu Qinkui, Hu Zeyong, Ma Mingguo, Wang Weizhen, Tan Junlei, Huang Guanghui, Zhang Zhihui. WATER: Dataset of automatic meteorological observations at the Linze grassland station. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. 2008. doi:10.3972/water973.0283.db


Related Publications (Recommended by Author)

  1. Xu T, Liu S, Xu L, Chen Y, Jia Z, Xu Z, Nielson J. Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing. 2015, 7(3):3400-3425. doi:10.3390/rs70303400Detail Download

Special Publications

  1. Li X, Li XW, Li ZY, Ma MG, Wang J, Xiao Q, Liu Q, Che T, Chen EX, Yan GJ, Hu ZY, Zhang LX, Chu RZ, Su PX, Liu QH, Liu SM, Wang JD, Niu Z, Chen Y, Jin R, Wang WZ, Ran YH, Xin XZ, Ren HZ. Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research, 2009, 114(D22103), doi:10.1029/2008JD011590.Detail | Download
  2. Wang Liangxu, Wang Shuguo, Ran Youhua. Data Sharing and Data Set Application of Watershed Allied Telemetry Experimental Research. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):2020-2024. doi:10.1109/LGRS.2014.2319301Detail | Download
  3. Li X, Li XW, Roth K, Menenti M, Wagner W. Preface 'Observing and modeling the catchment scale water cycle'. Hydrology and Earth System Sciences, 2011, 15(2): 597-601. doi:10.5194/hess-15-597-2011.Detail | Download

Cited By

  1. Tian W, Li X, Cheng GD, Wang XS, Hu BX. Coupling a groundwater model with a land surface model to improve the water and energy cycle simulation. Hydrology and Earth System Sciences, 2012, 16(12): 4707-4723, doi:10.5194/hess-16-4707-2012.Detail
  2. Pan XD, Li X. Validation of WRF model on simulating forcing data for Heihe River Basin. Sciences in Cold and Arid Regions, 2011, 3(4): 344-357, doi: 10.3724/SP.J.1226.2011.00344.Detail Download
  3. Tang RL, Li ZL, Tang BH. An application of the T-s-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 2010, 114(3): 540-551.Detail Download
  4. Liu Q, Wang MY, Zhao YS. Assimilation of ASAR data with a hydrologic and semi-empirical backscattering coupled model to estimate soil moisture. Chinese Geographical Science, 2010, 20(3): 218-225.Detail Download

Limitations

The dataset is generated from the "Watershed Airborne Telemetry Experimental Research (WATER) “, the user must have a clear statement in the article of the original data source and adopt the reference style providing by the metadata in the References section.

Fund

  • The CAS (Chinese Academy of Sciences) Action Plan for West Development Project (No. KZCX2-XB2-09)
  • National Program on Key Basic Research Project (973 Program) (No. 2007CB714400)

Online Resources