Westdc Logo

HiWATER: Simultaneous Observation Dataset of Land Surface Temperature in the middle reaches of the Heihe River Basin Chinese Version


The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing.

1. Observation time and other details

On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded.

On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer.

On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer.

On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer.

On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer.

On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer.

On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region.

On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region.

2. Instrument parameters and calibration

The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation.

3. Data storage

All the observation data were stored in excel.


CitationHelp

Paper Cite Li X, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Wang WZ, Hu XL, Xu ZW, Wen JG, Wang LX. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 2017, 4: 170083. doi:10.1038/sdata.2017.83.

Dataset Cite Geng Liying,Ma Mingguo,Wu Guiping,Chen Shulin,Jia Shuzhen,Wang Haibo,Peng Li. HiWATER: Simultaneous Observation Dataset of Land Surface Temperature in the middle reaches of the Heihe River Basin. Heihe Plan Science Data Center, 2013. doi:10.3972/hiwater.031.2013.db (Download: RIS | Bibtex)


Related Publications (Recommended by Author)

  1. Liu Q, Yan CY, Xiao Q, Yan GJ, Fang L. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 66-75, doi:10.1016/j.jag.2011.10.003.Detail

General introduction of HiWATER

  1. Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1.Detail | Download

Limitations

The dataset is generated from the "Heihe Watershed Allied Telemetry Experimental Research (HiWATER)". User must have a clear statement in the article of the original data source and cite the dataset and papers in the Citation section.

Fund

  • National Natural Science Foundation of China (No. 91125004)

Online Resources



InformationFile list

  • File Format: *.xlsx
  • Size: 0 MB
  • Downloaded: 29
  • Viewed: 5114
  • Temporal Range: 2012-06-25 to 2012-08-03

Google Maps


Contacts


  • Last update: 2017-08-14
  • Download Metadata: Adobe PDF OpenOffice odt Word doc XML
  • Versions: 10