Westdc Logo

WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008 Chinese Version


The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included:

(1) The radiative temperature by the handheld radiometer (BNU) in Yingke oasis maize field and Huazhaizi desert maize field (the vertical canopy observation and the transect observation for both fields), and Huazhaizi desert No. 2 plot (the diagonal observation). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format).

(2) The component temperature of maize and wheat by the handheld radiometer in Yingke oasis maize field, Yingke wheat field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format).

(3) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°), The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format).

(4) The radiative temperature and the canopy multi-angle radiative temperature by the fixed automatic thermometer (FOV: 10°; emissivity: 1.0), observing straight downwards at intervals of 1s in Yingke oasis maize field (2 instruments for maize canopy), Huazhaizi desert maize field (only one for maize canopy) and Huazhaizi desert No. 2 plot (two for reaumuria soongorica canopy and the bare land). The thermal infrared remote sensing calibration was carried out in the resort plot. Raw data, blackbody calibrated data and processed data were all archived in Excel format.

(5) Coverage fraction of maize and wheat by the self-made instrument and the camera (2.5m-3.5m above the ground) in Yingke oasis maize field. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS date were also collected and the technology LAB was applied to retrieve the coverage of the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the primarily measured image and final fraction of vegetation coverage.

(6) Reflectance spectra of Yingke oasis maize field (350-2500nm, from Institute of Remote Sensing Applications) and resort calibration site (350-2500nm, from Beijing Univeristy) by ASD (Analytical Sepctral Devices); BRDF by the self-made observation platform. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format.

(7) Atmospheric parameters at the resort calibration site by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.

(8) Soil moisture (0-40cm) by the cutting ring, the soil temperature by the thermocouple thermometer, roughness by the self-made roughness board and the camera in Huazhaizi desert No. 1 plot. Sample points were selected every 30m along the diagonals. Data were all archived in Excel format.

(9) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format.

(10) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Word.

LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were archived in Excel format of May 31.


CitationHelp

Data Citation Zhang Wuming, Ren Huazhong, Xin Xiaozhou, Wang Jianhua, Tao Xin, Chen Ling, Chai Yuan, He Tao, Kang Guoting, Qian Yonggang, Ren Zhixing, Wang Haoxing, Zou Jie, Guang Jie, Liu Sihan, Zhang Yang, Zhou Chunyan, Liu Xiaochen, Liang Wenguang, Li Xiaoyu, Wang Dacheng, Cheng Zhanhui, Yang Tianfu, Huang Bo, Li Shihua, Luo Zhen, Ge Yingchun, Shu Lele, Xu Zhen. WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 30, 2008. Beijing Normal University; Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences; Institute of Remote Sensing Applications, Chinese Academy of Sciences; Peking University; Graduate University of Chinese Academy of Sciences; National Engineering Research Center for Information Technology in Agriculture; South China Agricultural University; Center for Earth Observation and Digital Earth, Chinese Academy of Sciences; Lanzhou Jiaotong University; University of Electronic Science and Technology of China. 2008. doi:10.3972/water973.0124.db


Special Publications

  1. Li X, Li XW, Li ZY, Ma MG, Wang J, Xiao Q, Liu Q, Che T, Chen EX, Yan GJ, Hu ZY, Zhang LX, Chu RZ, Su PX, Liu QH, Liu SM, Wang JD, Niu Z, Chen Y, Jin R, Wang WZ, Ran YH, Xin XZ, Ren HZ. Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research, 2009, 114(D22103), doi:10.1029/2008JD011590.Detail | Download
  2. Wang Liangxu, Wang Shuguo, Ran Youhua. Data Sharing and Data Set Application of Watershed Allied Telemetry Experimental Research. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):2020-2024. doi:10.1109/LGRS.2014.2319301Detail | Download
  3. Li X, Li XW, Roth K, Menenti M, Wagner W. Preface 'Observing and modeling the catchment scale water cycle'. Hydrology and Earth System Sciences, 2011, 15(2): 597-601. doi:10.5194/hess-15-597-2011.Detail | Download

Cited By

  1. Guang J, Xue Y, Yang L, Mei L, He X. A method for retrieving land surface reflectance using MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1564-1570.Detail Download
  2. Liu ZY, Ma LL, Tang LL, Qian YG. LAI Retrieval Based on PROSPECT-SAILH Model from Multi-Angular Data of WiDAS Imaging System. Advanced Materials Research, 2012, 518-523: 5697-5703.Detail

Limitations

Fund

  • National Program on Key Basic Research Project (973 Program) (No. 2007CB714400)
  • The CAS (Chinese Academy of Sciences) Action Plan for West Development Project (No. KZCX2-XB2-09)

Online Resources