Westdc Logo

HiWATER: Dataset of Fractional Vegetation Cover and Biomass Observed in the middle reaches of the Heihe River Basin (2013) Chinese Version


The dataset includes the fractional vegetation cover data generated from the stations of crop land, wetland, Gebi desert and desert steppe in Yingke Oasis and biomass data generated from the stations of crop land (corn) and wetland. The observations lasted for a vegetation growth cycle from 19 May, 2012 to 15 September, 2012.

1. Fractional vegetation cover observation

1.1 Observation time

1.1.1 Station of the crop land: The observations lasted from 20 May, 2012 to 15 September, 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July.

The observation time for the station of crop land (corn) are 2013-5-20, 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15.

1.1.2 The other four stations: The observations lasted from 20 May, 2012 to 15 September, 2012 and in ten-day periods for each observation.

The observation time for the crop land are 2013-5-20, 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15.

1.2 method

1.2.1 Instruments and measurement method

Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control.

1.2.2 Design of the samples

Three and two plots with the area of 10×10 m^2 were measured for the station of the crop land and wetland, respectively. One plot with the area of 10×10 m^2 was measured for the other three stations. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values.

1.2.3 Photographic method

The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the stations of crop land and wetland. For the station of the crop land, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other three stations, the photos of FVC were obtained by directly photographing for the lower heights of the vegetation.

1.2.4 Method for calculating the FVC

The FVC calculation was implemented by the Beijing Normal University. The detail method can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference).

2. Biomass observation

2.1. Observation time

2.1.1 Station of the crop land: The observations lasted from 20 May 2012 to 15 September 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July.

The observation time for the crop land are 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15.

2.1.2 The station of wetland: The observations lasted from 20 May 2012 to 15 September 2012, and in ten-day periods for each observation.

The observation time for the crop land are 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15.

2.2. Method

Station of the crop land: Three plots were selected and three strains of corn for each observation were random selected for each plot to measure the fresh weight (the aboveground biomass and underground biomass) and dry weight. Per unit biomass can be obtained according to the planting structure.

Station of the wetland: Two plots of reed with the area of 0.5 m × 0.5 m were random selected for each observation. The reed of the two plots was cut to measure the fresh weight (the aboveground biomass) and dry weight.

2.3. Instruments

Balance (accuracy 0.01 g); drying oven

3. Data storage

All observation data were stored in excel. Other data including plant spacing, row spacing, seeding time, irrigation time, the time of cutting male parent and the harvest time of the corn for the station of cropland were also stored in the excel.


CitationHelp

Paper Cite Li X, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Wang WZ, Hu XL, Xu ZW, Wen JG, Wang LX. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 2017, 4: 170083. doi:10.1038/sdata.2017.83.

Dataset Cite Geng Liying,Ma Mingguo,Jia Shuzhen,Li Yimeng. HiWATER: Dataset of Fractional Vegetation Cover and Biomass Observed in the middle reaches of the Heihe River Basin (2013). Heihe Plan Science Data Center, 2013. doi:10.3972/hiwater.154.2013.db (Download: RIS | Bibtex)


Related Publications (Recommended by Author)

  1. Liu YK, Mu XH, Wang HX, Yan GJ. A novel method for extracting green fractional vegetation cover from digital images. Journal of Vegetation Science, 2012, 23: 406–418.Detail Download

General introduction of HiWATER

  1. Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1.Detail | Download

Limitations

The dataset is generated from the "Heihe Watershed Allied Telemetry Experimental Research (HiWATER)". User must have a clear statement in the article of the original data source and cite the dataset and papers in the Citation section.

Fund

  • National Natural Science Foundation of China (No. 91125004)

Online Resources



InformationFile list

  • File Format: *.xlsx
  • Size: 3.4775390625 GB
  • Downloaded: 58
  • Viewed: 7400
  • Temporal Range: 2013-05-20 to 2013-09-15

Google Maps


Contacts


  • Last update: 2017-08-13
  • Download Metadata: Adobe PDF OpenOffice odt Word doc XML
  • Versions: 10