HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of A’rou Superstation, 2013)


This dataset contains the flux measurements from the large aperture scintillometer (LAS) at A’rou Superstation in the hydrometeorological observation network of Heihe River Basin between 14 October, 2012, and 31 December, 2013. There were two types of LASs at A’rou Superstation: German BLS450 and China zzlas. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. Zzlas has been in use since 14 October, 2012, and the observation period of BLS450 was from 9 August to 10 December, 2013. The site (north: 100.467° E, 38.050° N; south: 100.450° E, 38.033° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled at 5 Hz and 1 Hz intervals for BLS450 and zzlas, respectively, and then averaged over 1 min.

The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000; zzlas: Demod>-20 mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively.

Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the drift of the zzlas signal, data from 10 November to 23 November, 2012, and 14 March to 10 April, 2013, were excluded. Due to the LAS tower’s lean, the data from 10 April to 31 May, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red.

For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.


Required Data Citation View Data Cite Help About Data Citation
Cite as:

LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei. HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of A’rou Superstation, 2013). A Big Earth Data Platform for Three Poles, 2018. doi: 10.3972/hiwater.207.2014.db. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Liu, S.M., Li, X., Xu, Z.W., Che, T., Xiao, Q., Ma, M.G., Liu, Q.H., Jin, R., Guo, J.W., Wang, L.X., Wang, W.Z., Qi, Y., Li, H.Y., Xu, T.R., Ran, Y.H., Hu, X.L., Shi, S.J., Zhu, Z.L., Tan, J.L., Zhang, Y., & Ren, Z.G. (2018). The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone Journal, 17(1), 180072. doi:10.2136/vzj2018.04.0072.( View Details | Bibtex)

2. Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., & Yang, X. (2019). Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 11, 1483-1499( View Details | Download | Bibtex)

3. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306. doi:10.5194/hess-15-1291-2011.( View Details | Download | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Qiao, C., Sun, R., Xu, Z.W., Zhang, L., Liu, L.Y., Hao, L.Y., Jiang, G.Q. (2015). A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China. IEEE Geoscience and Remote Sensing Letters, 12(2), 369-373. doi:10.1109/LGRS.2014.2342219. (View Details )

2.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140, doi: 10.1175/JAMC-D-16-0096.1. (View Details )

3.Song, L.S., Kustas WP, Liu, S.M., Colaizzi PD, Nieto H, Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam N, Tolk JA, Evett SR. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.034. (View Details )

4.Zhu, Z.L., Tan, L., Gao, S.G., & Jiao, Q.S. (2015). Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476. doi:10.1109/LGRS.2014.2346784. (View Details )

5.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. doi:10.1109/LGRS.2014.2339360. (View Details )

6.Song, L.S., Liu, S.M., William Kustas P, Zhou, J., Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. doi:10.3390/rs70505828. (View Details )

7.Li, X., Cheng, G.D., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R., Che, T., Liu, Q.H., Wang, W.Z., Qi, Y., Wen, J.G., Li, H.Y., Zhu, G.F., Guo, J.W., Ran, Y.H., Wang, S.G., Zhu, Z.L., Zhou, J., Hu, X.L., & Xu, Z.W. (2013). Heihe watershed allied telemetry experimental research (hiwater): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8), 1145-1160. doi:10.1175/BAMS-D-12-00154.1. (View Details )

8.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details )

9.Xu, Z.W., Liu, S.M., Li, X., Shi, S.J., Wang, J.M., Zhu, Z.L., Xu, T.R., Wang, W.Z., & Ma, M.G. (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research, 118, 13140-13157. (View Details | Download )

10.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. doi:10.1109/LGRS.2014.2355871. (View Details )

11.Li, X., Liu, S.M., Ma, M.G., Xiao, Q., Liu, Q.H., & Jin, R., et al. (2012). (2012). Hiwater:an integrated remote sensing experiment on hydrological and ecological processes in the heihe river basin. Advances in Earth Science, 27(5), 481-498. (View Details | Download )

12.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details )

13.Xu, T.R., Bateni, S.M., Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. doi:10.1109/LGRS.2014.2326180. (View Details )

14.Song, L.S., Liu, S.M., Kustas W P, Zhou, J., Xu, Z.W., Xia, T., Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, doi:10.1016/j.agrformet.2016.01.005. (View Details )

15.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. doi:10.1109/LGRS.2014.2334703. (View Details )

16.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, doi: 10.1016/j.agrformet.2016.02.019. (View Details )

17.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., & Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details | Download )

18.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. doi:10.1016/j.jag.2014.03.003. (View Details )

19.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci., 58(2), 211-230, doi: 10.1007/s11430-014-4964-7. (View Details | Download )

20.Li, Y., Sun, R., Liu, S.M. (2014).Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. SCIENCE CHINA, doi:10.1007/s11430-014-4909-1. (View Details )

21.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. doi:10.1109/LGRS.2014.2356652. (View Details )

22.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. doi:10.1016/j.agrformet.2016.04.008. (View Details | Download )

23.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. doi:10.1109/LGRS.2014.2368580. (View Details )

24.Zhang, L., Sun, R., Xu, Z.W., Qiao, C., Jiang, G.Q. (2015). Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLoS ONE, 10(3). doi:10.1371/journal.pone.0120660. (View Details )

25.Xu, T., Liu, S., Xu, L., Chen, Y., Jia, Z., Xu, Z., Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing. 7(3), 3400-3425. doi:10.3390/rs70303400. (View Details | Download )


Support Program

National Natural Science Foundation of China (No:91125002)

User Limit

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comment

Sign In to add comments

Download Follow
Keywords
Geographic coverage
East: 100.47 West: 100.47
South: 38.05 North: 38.05
Detail
  • File size: 0.72 MB
  • Browse count: 8,051 Times
  • Apply count: 34 Times
  • Share mode: offline
  • Temporal coverage: 2012-10-14 To 2013-12-31
  • Updated time: 2019-08-08
Contact Information
: LIU Shaomin   LI Xin   CHE Tao   XU Ziwei   ZHANG Yang   TAN Junlei  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Export metadata