Current Browsing: 2010

Hydrological data of Heihe River: report set of planning and water distribution of Heihe River Basin

Data investigation method: investigation and collection of Heihe River Basin Authority. The data include: the water distribution plan of the main stream of Heihe River (including Liyuan River) prepared by the Yellow River Water Conservancy Commission of the Ministry of water resources in 1996; the brief report on the water conservancy planning of the main stream of Heihe River prepared by Lanzhou survey and Design Institute of the Ministry of water resources in 1992; the short term management plan of Heihe River Basin approved by the State Council in 2001; the compilation of historical documents of water regulation of Heihe River by the administration of Heihe River Basin in 2008 》In 2014, the research on the reasonable allocation scheme of water resources in Jiuquan Basin of the Taolai River Basin was compiled by the Taolai River Basin Authority.


Water use data of counties of Heihe River Basin (2012)

Data source: survey data of Heihe River Basin Authority; Data introduction: in 2010, Sunan County, Ganzhou District, Minle County, Linze County, Gaotai County, Shandan County, Jinta County, Ejina, Suzhou District and Jiayuguan used water for living, industry, agriculture, urban and rural ecology.


Landsat TM mosaic image of the Heihe River Basin (2010)

The Landsat TM Mosaic Image of the Heihe River Basin can be effectively applied to monitoring land-use change of the basin, which reflects the current situation of the Heihe River Basin in 2010, and provides a reliable basis for ecological planning and restoration. This mosaic image collected the TM images released by the USGS for free in 2010 (data from July to September 2010, totally 21 scenes, the maximum cloud amount is less than 10%), and the preprocessed images were geometrically registered by topographic maps(polynomial geometry correction method), then a geometrically-corrected digital mosaic map was generated, which was of high quality after a certain accuracy evaluation. The images were stored in ERDAS IMG format, and the most abundant bands 5, 4 and 3 combination, with three colors: red, green, and blue were selected to generate a color composite image. The combined composite image not only is similar to natural color, which is more in accordance with people's visual habits, but also can fully display the differences in image features because of the rich amount of information.


The resident site distribution data of the Heihe River Basin

This data mainly includes the distribution of city, county, township and village level residential areas in the Heihe River Basin, and the data base year is 2009. The data is based on the existing data of residential areas in Heihe River Basin, the latest Google electronic map and the atlas of Gansu Province. There are two main attributes of the data, i.e. residential area classification and total name. The residential area classification is classified according to level 1 - City, level 2 - County, level 3 - Township and level 4 - village.


Grain size distribution of soil particles dataset of the Heihe basin

The source data of this data set comes from the 1:1 million soil map of China (Shi et al., 2004) and 8595 soil sections in the second Soil Census. The polygonal connection method is used to connect the soil profile with the soil map to obtain the soil sand, silt and clay content map. The distance between the profile and the map spot, the number of soil profiles and the information of soil classification are taken into account. Please refer to related papers and web pages for specific instructions. Data characteristics Projection: GCS_Krasovsky_1940 Coverage: Heihe River Basin Resolution: 0.00833 degrees (about one kilometer) Data format: FLT, tiff Value range: 0% - 100% Document description Floating point grid files include: Sand1.flt, clay1.flt - content of sand and clay in the surface layer (0-30cm). Sand2.flt, clay2.flt - sand and clay content in the bottom layer (30-100cm). Psd.hdr – header file: Ncols - number of columns Nrows - number of rows Xllcorner - lower left latitude Yllcorner - lower left longitude Cellsize - cell size NoData_Value – null byteorder - LSBFIRST, Least Significant Bit First TIFF grid files include: Sand 1.tif, clay 1.tif - the content of sand and clay in the surface layer (0-30cm). Sand 2.tif, clay 2.tif - sand and clay content in the bottom layer (30-100cm). For data details, please refer to:


Primary road network dataset of the Heihe Rriver basin (2010)

Data overview: this set of data mainly includes the spatial distribution of major roads in the heihe river basin, the attributes include road classification and road coding, and the data base year is 2010. Data preparation process: this set of data is based on the topographic map, remote sensing image and the latest road traffic map updated by the transportation department of gansu province in 2009. Data description: there are two important attributes of the data, namely, road classification and road code. The road classification is divided into national road, provincial road, county road, township road and private road. The road code is defined in accordance with the highway grade code of the traffic department.


The Heihe River basin boundary (1985、1995、2000、2005、2010)

Heihe river basin is the second largest inland river basin in China. In the past 30 years, a relatively perfect drainage observation system has been established in heihe river basin, which has become an important inland river research base in China.River basin is an important natural research unit, but the boundary of heihe river basin is not unified. In order to facilitate the use of data by users, we collected and sorted out 5 kinds of heihe river basin boundaries commonly seen in the literature: 1) from 1985 to 1986, China began to conduct systematic research on the heihe river basin as a whole. On the basis of basic investigation and a large number of data mastered, the early heihe river basin map was drawn with an area of 138,900 km ^ 2.The whole basin is divided into three hydrologic balance zones, which are: the balance zone of heihe main stream system, the balance zone of beida river main stream system and the balance zone of ma ying - feng leshan front water system. 2) sub project national key scientific research project of the ninth five-year plan "in heihe river basin water resources reasonable use and the economic society and ecological environment coordinated development research", considering the integrity of the county-level administrative units, on the basis of the first basin boundary using the administrative boundary of basin boundary was revised, formed the "digital heihe" published information system ( of the heihe river basin boundary, watershed area of 128700 km ^ 2.The division of hydrological unit inherits the original idea and is divided into three river systems, namely the eastern river system, the central river system and the western river system. 3) in the comprehensive control plan of heihe river basin of the ministry of water resources, the area of heihe river basin is determined as 142,900 km ^ 2, and the hydrologic unit is divided into two independent water systems in the central and western regions and the east, with an area of 27,000 km2 and 116,000 km ^ 2 respectively. 4) in 2002-2006 in the national integrated water resources planning, "the Yellow River" (piece of) integrated water resources planning working group in 2005, the establishment "the northwest rivers and water resources and its exploitation and utilization of investigation evaluation report, briefly, to the secondary and tertiary area as the unit of water resources, to complete a series of natural geography and social economy statistical tables, maps and other data.In this comprehensive plan, the area of heihe river basin is about 151,700 km ^ 2, and the plan does not give a more detailed sub-watershed division plan. 5) based on the high-precision digital elevation model (SRTM and ASTER GDEM), the boundary of heihe river basin was determined by using the GIS hydrologic analysis method.The boundary has been verified by remote sensing and field investigation, and the present situation of modern water resources utilization is considered in the process of basin boundary determination and sub-basin division.


The NPP products of MODIS in Sanjiangyuan (1985-2015)

The data set contains NPP products data produced by the maximum synthesis method of the three source regions of the Yellow River, the Yangtze River and the Lancang River. The data of remote sensing products MOD13Q1, MOD17A2, and MOD17A2H are available on the NASA website ( The MOD13Q1 product is a 16-d synthetic product with a resolution of 250 m. The MOD17A2 and MOD17A2H product data are 8-d synthetic products, the resolution of MOD17A2 is 1 000 m, and the resolution of MOD17A2H is 500 m. The final synthetic NPP product of MODIS has a resolution of 1 km. The downloaded MOD13Q1, MOD17A2, and MOD17A2H remote sensing data products are in HDF format. The data have been processed by atmospheric correction, radiation correction, geometric correction, and cloud removal. 1) MRT projection conversion. Convert the format and projection of the downloaded data product, convert the HDF format to TIFF format, convert the projection to the UTM projection, and output NDVI with a resolution of 250 m, EVI with a resolution 250 m, and PSNnet with resolutions of 1 000 m and 500 m. 2) MVC maximum synthesis. Synthesize NDVI, EVI, and PSNnet synchronized with the ground measured data by the maximum value to obtain values corresponding to the measured data. The maximum synthesis method can effectively reduce the effects of clouds, the atmosphere, and solar elevation angles. 3) NPP annual value generated from the NASA-CASA model.


Global river and lake vector dataset (2010)

River and lake resources are important components for studying the Earth ecological environment, affecting global ecosystems, heat, material exchange and balance and serving as an important basis for studying changes in the global environmental mechanism. At present, the lack of global lake vector data with large-scale, high-precision, and large-range has hindered hydrological research on rivers and lakes. Taking the data collection of global rivers and lakes of Jun Chen as the source data and combining the domestic high-resolution image GF data of 2 to 3 years before and after 2010, a data set of global rivers and lakes was generated. This data set makes up for the shortcomings of low precision in some areas and is an editable lake and river vector data set with high accuracy.


Administrative divisions for Arctic Countries at the national and provincial levels

Based on the Global 1,000,000 Basic Geographic Data (2010) of the Resource and Environment Science Data Center of the Chinese Academy of Sciences, the administrative divisions of Arctic countries (USA, Canada, Russia, Norway (including Greenland and the Faroe Islands), Denmark, Sweden, Finland, and Iceland) at the national and provincial levels are extracted via ArcGIS. The data are stored separately by nation. The data format is the .shp format of ArcGIS, and the projection mode is GCS_WGS_1984. The national data are from The provincial data are from