Current Browsing: 2010


Administrative divisions for Arctic Countries at the national and provincial levels

Based on the Global 1,000,000 Basic Geographic Data (2010) of the Resource and Environment Science Data Center of the Chinese Academy of Sciences, the administrative divisions of Arctic countries (USA, Canada, Russia, Norway (including Greenland and the Faroe Islands), Denmark, Sweden, Finland, and Iceland) at the national and provincial levels are extracted via ArcGIS. The data are stored separately by nation. The data format is the .shp format of ArcGIS, and the projection mode is GCS_WGS_1984. The national data are from http://www.resdc.cn/data.aspx?DATAID=205. The provincial data are from http://www.resdc.cn/data.aspx?DATAID=206.

2020-05-28

A permafrost thermal type map on the Tibetan Plateau (2000-2010)

The past frozen soil map of the Tibetan Plateau was based on a small number of temperature station observations and used a classification system based on continuity. This data set used the geographically weighted regression model (GWR) to synthesize MODIS surface temperature, leaf area index, snow cover ratio and multimodel soil moisture forecast products of the National Meteorological Information Center through spatiotemporal reconstruction. In addition, precipitation observations of more than 40 meteorological stations, the precipitation products of FY2 satellite observations and the multiyear average temperature observation data of 152 meteorological stations from 2000 to 2010 were integrated to simulate the average temperature data of the Tibetan Plateau, and the permafrost thermal condition classification system was used to classify permafrost into several types: Very cold, Cold, Cool, Warm, Very warm, and Likely thawing. The map shows that, after deducting lakes and glaciers, the total area of permafrost on the Tibetan Plateau is approximately 1,071,900 square kilometers. Verification shows that this map has higher accuracy. It can provide support for future planning and design of frozen soil projects and environmental management.

2020-04-29

Transportation system for 8 Arctic countries (railways and roads) (2010)

Based on the Global 1,000,000 Basic Geographic Data (2010) of the Resource and Environment Science Data Center of the Chinese Academy of Sciences, the railway and highway networks of Arctic countries (USA, Canada, Russia, Norway (including Greenland and the Faroe Islands), Denmark, Sweden, Finland, and Iceland) are extracted via ArcGIS. The data are stored separately by nation. The data format is the .shp format of ArcGIS, and the projection mode is GCS_WGS_1984. The railway network data are from http://www.resdc.cn/data.aspx?DATAID=208, and the highway network data are from http://www.resdc.cn/data.aspx?DATAID=207

2020-04-28

Remote sensing mosaicing map of Heihe River Basin

The “Eco-Hydrology Integrated Atlas of the Heihe River Basin ” was supported by the major program: Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. It provided data collation and service for Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. The Atlas will provide researchers with a comprehensive and detailed introduction of the background and basic data sets of the Heihe River Basin. Eco-Hydrology Integrated Atlas of the Heihe River Basin: Remote Sensing Mosaicing of the Heihe River Basin, scale 1:2500000, positive-axis equivalence conical projection, standard parallel: north latitude 25 47 Data source: Landsat TM Mosaic Image of the Heihe River Basin in 2010, Heihe River Basin Boundary,River Network Dataset of the Heihe River Basin, The Resident Site Distribution Data of the Heihe River Basin, etc.

2020-03-31

1:100,000 Landuse data in the Yellow River Upstream (2010)

Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.

2020-03-29

HiWATER: 1km/5day compositing Leaf Area Index (LAI) product of the Heihe River Basin (2010-2014)

The 1 km / 5-day Lai data set of Heihe River basin provides the 5-day Lai synthesis results of 2010-2014. The data uses Terra / MODIS, Aqua / MODIS, as well as domestic satellites fy3a / MERSI and fy3b / MERSI sensor data to build a multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. Multi-source remote sensing data sets can provide more angles and more observations than a single sensor in a limited time. However, due to the difference of on orbit running time and performance of sensors, the observation quality of multi-source data sets is uneven. Therefore, in order to make more effective use of multi-source data sets, the algorithm first classifies the quality of multi-source data sets, which can be divided into first level data, second level data and third level data according to the observation rationality. The third level data are observations polluted by thin clouds and are not used for calculation. The purpose of quality evaluation and classification is to provide the basis for the selection of the optimal data set and the design of inversion algorithm flow. Leaf area index product inversion algorithm is designed to distinguish mountain land and vegetation type, using different neural network inversion model. Based on global DEM map and surface classification map, PROSAIL model is used for continuous vegetation such as grassland and crops, and gost model is used for forest and mountain vegetation. Using the reference map generated by the measured ground data of the forests in the upper reaches of Heihe River and the oasis in the middle reaches, and scaling up the corresponding high-resolution reference map to 1km resolution, compared with the Lai product, the product has a good correlation between the farmland and the forest area and the reference value, and the overall accuracy basically meets the accuracy threshold of 0.5%, 20% specified by GCOS. By cross comparing this product with Lais products such as MODIS, geov1 and glass, the accuracy of this Lai product is better than that of similar products compared with reference value. In a word, the synthetic Lai data set of 1km / 5 days in Heihe River Basin comprehensively uses multi-source remote sensing data to improve the estimation accuracy and time resolution of Lai parameter products, so as to better serve the application of remote sensing data products.

2020-03-13

Dataset of vegetation plots in the Ejina delta (2010-2011)

Field survey data of ecological vegetation sample in ejin delta during the project implementation period. A sample of ecological vegetation survey near 31 groundwater salinity observation points in ejin delta.The main investigation items include: plant species, plant structure, number, height, base diameter, crown width, coverage, frequency, etc.Time: 2010 and 2011 (july-august).

2020-03-10

Reservoirs map of the Heihe River Basin

Reservoir refers to the artificial water area formed in valley, river or low-lying area by dam, dike, sluice, weir and other projects. It is the main measure used for runoff regulation to change the distribution process of natural water resources and plays an important role in social and economic development. Many reservoirs have been built in Heihe River Basin, which has an important impact on the utilization of water resources in this area. In order to facilitate the mapping needs of users, we use topographic map and remote sensing image to prepare the reservoir distribution map of the Heihe River Basin. The location and shape of the reservoir are mainly obtained by manual interpretation based on Google map image, which basically shows the current situation of the reservoir distribution in the Heihe River Basin around 2010.

2020-03-07

Landscape types of the Heihe River Basin

"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. Comprehensive atlas of ecological hydrology of Heihe River Basin: landform type map of Heihe River Basin, scale 1:2500000, positive axis isometric conic projection, standard latitude: 2547 n. Data source: 1 million topographic map of Heihe River Basin, administrative boundary data of Heihe River Basin, river data set of Heihe River Basin, residential area data of Heihe River Basin and other basic data.

2020-03-05

The boundary of the Heihe River Basin in 2010

"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The boundary map of the Heihe River Basin in 2010 is one of the basic geographic part of the atlas, with a scale of 1:2500000, positive axis equal product conic projection and standard latitude of 25 47。 Data sources: 2010 Heihe River basin boundary data, 2010 Heihe River Basin road data, 2008 1 million Heihe River basin administrative boundary data, 2009 Heihe River Basin residential area data, 2009 100000 river data

2020-03-03