Current Browsing: 2010

Landscape structure changes dataset of the terminal lakes and wetlands of the China's Heihe River Basin in the recent 50 years

Taking Landsat series data as the main data source, including KH in 1965 (only including Gurinai and Guaizi Lake), MSS in 1975, TM in 1990, 1995, 2006 and 2010, and ETM in 2000. Before information extraction, remote sensing images are preprocessed by image synthesis, mosaic, fusion, geometric correction and image enhancement. In the process of correction, ETM + image in 2000 is corrected by 1:100000 topographic map and used as reference image. The 4, 3 and 2 band standard pseudocolor synthesis scheme is selected for image synthesis; during correction, 7 × 8 control points are evenly selected on each image, and the average positioning error is less than 1 pixel, that is, the ground distance is less than 30m. In other years, the datum image of 2000 is used as the reference image for image registration, so that the pixels with the same name on different images have the same geographical coordinates. After correction and registration, the whole image maintains the 30 m spatial resolution of TM. Through field correction, the accuracy of qualitative analysis can be ensured to be over 95%.


HiWATER: Dataset of investigation on channel flow and socio-economy in the midstream of the Heihe River Basin

The dataset includes two parts that are: 1) channel flow, crop pattern, field management, and socio-economy data measured at super-station in 2008, 2010, 2011, 2012 (UTC+8), respectively. 2) irrigation data, crop pattern, and socio-economy data investigated at Daman irrigation district and Yingke irrigation district, respectively. 1.1 Objective of investigation Objectives of investigation for two parts data are to obtain crop pattern and irrigation water volume change with time, and to supply parameter for irrigation water optimal allocation model. 1.2 Investigation spots and items Investigation spots include six water management stations that are Dangzhai, Hua’er, Daman, Xiaoman, Jiantan, and Ershilidun, respectively, at Daman irrigation district. Investigation items comprise water allocation time, branch channel inflow, Dou channel inflow, irrigation area, channel water use efficiency, water price, and water fee. Investigation time is described as followed: 2012.03.16 to 2012.04.04, Spring irrigation; 2012.04.04 to 2012.05.14, Summer irrigation; 2012.05.20 to 2012.06.24, Summer irrigation; 2012.05.16 to 2012.07.06, Summer irrigation; 2012.07.15 to 2012.08.02, Autumn irrigation; 2012.08.10 to 2012.08.26, Autumn irrigation. Investigation spots include eight water management station that are Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, and Yangou, respectively, at Yingke irrigation district. Investigation time and items is described as followed: Year Data items Spots 2008, 2010, 2011 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Xiaoman county, Shangtouzha village 2012 Irrigation data: Irrigation time, water level of Dou channel, channel flow, irrigation area Chang’an, Shangqin, Dangzhai, Liangjiadun, Shimiao, Xiaoman, Xindun, Yangou 2012 Well data: Well deep, groundwater abstraction, irrigation area Chang’an, Liangjiadun, Shangqin 2012 Socio-economy data: population, agricultural income, un-agricultural income, water use for living, average residential area, education Chang’an, Xiaoman, Liangjiadun, Shangqin 2012 Field management: fertilizer name, fertilization time, fertilization rate, pesticide name, pesticide rate, time Chang’an, Xiaoman, Liangjiadun, Shangqin 2008, 2010, 2011, 2012 Crop pattern: crop name, seed time, harvest time, crop area, irrigation quota, field water use efficiency, crop yield, crop production value Xiaoman, Chang’an, Liangjiadun, Shangqin 1.3 Data collection Data was collected by cooperating with water management department of Yingke and Daman.


HiWATER:Dataset of fractional snow cover area in the Heihe River Basin

The data set provided the cloudless Fractional Snow Cover area (FSC) time-series product basing on the MODIS data and covered the Heihe River Basin from January 2010 to December 2013. They also provide the high spatial (500 m) and temporal (1 day) resolution. Firstly, the end-member were automatically extracted by the fast autonomous spectral end-member determination (N-FINDR) maximizing volume iteration algorithm. Combining N-FINDR with the orthogonal subspace projection (OSP) approach, we propose an improved end-member extraction algorithm using a maximizing, volume-based iterative method. All the 6 end-members were extracted including snow, soil, water, bare land, vegetation, and cloud, respectively. Then, the 10-day spectral library time series based on prior knowledge of Heihe basin are built for 2009. The primary data were produced using the fully constrained least squares (FCLS) linear spectral mixture analysis method by the spectral library. Finally,the cubic spline interpolation algorithm were used to the eliminate the cloud pixels completely and obtain the data set. The data are validated by the fractional snow cover derived from Landsat imagery and the results indicate that the improved algorithm can obtain the end-member information accurately, and the retrieved fractional snow cover has better accuracy than the MODIS fractional snow-cover product (MOD10A1). So the data set can provide more accurate input for the hydrology and climate model.