Current Browsing: Lake ice


Inventory dataset of glacial lakes in the Sikkim Region, India (2000)

This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.

2020-06-09

Inventory of glacial lakes in Pakistan (2003-2004)

This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory adopts the Landsat remote sensing data and reflects the status of glacial lakes in the Pakistan region from 2003 to 2004. 2. In terms of spatial coverage, the glacial lake inventory covers the Swat, Chitral, Gilgit, Hunza, Shigar, Shyok, Upper, Indus, Shingo, Astor and Jhelum river basins in the upper reaches of the Indus River. 3. The glacial lake inventory data include the glacial lake code, glacial lake type, glacial lake area, distance between the glacier and the glacial lake, glaciers related to the glacial lake, etc. For detailed descriptions of the data, please refer to the data file and report.

2020-06-09

Glacial lake inventory of the Pumqu Basin in the Himalayan Region of China (2004)

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resources Centre for Asia and the Pacific (UNEP/RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute (CAREERI). 9. This glacial lake cataloging uses Landsat (TM and ETM), Aster and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in the Himalayas in 2004. 10. Glacial lake catalogue coverage: the Himalayan region, Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali) and others. 11. Glacial Lake cataloging includes glacial lake cataloging, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 12. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For a detailed data description, please refer to the data file and report.

2020-06-09

Inventory of glacial lakes in Nepal (2000)

This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

2020-06-09

Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

2020-06-04

Data on glacial lakes in the TPE (V1.0) (1990, 2000, 2010)

There are three types of glacial lakes: supraglacial lakes, lakes attached to the end of the glacier and lakes not attached to the end of the glacier. Based on this classification, the following properties are studied: the variation in the number and area of glacial lakes in different basins in the Third Pole region, the changes in extent in terms of size and area, distance from glaciers, the differences in area changes between lakes with and without the supply of glacial melt water runoff, the characteristics of changes in the glacial lake area with respect to elevation, etc. Data source: Landsat TM/ETM+ 1990, 2000, 2010. The data were visually interpreted, which included checking and editing by comparing the original image with Google Earth images when the area was greater than 0.003 square kilometres. The data were applied to glacial lake changes and glacial lake outburst flood assessments in the Third Pole region. Data type: Vector data. Projected Coordinate System: Albers Conical Equal Area.

2020-05-04

River lake ice phenology data in QPT V1.0 (2002-2018)

River lake ice phenology is sensitive to climate change and is an important indicator of climate change. 308 excel file names correspond to Lake numbers. Each excel file contains six columns, including daily ice coverage information of corresponding lakes from July 2002 to June 2018. The attributes of each column are: date, lake water coverage, lake water ice coverage, cloud coverage, lake water coverage and lake ice coverage after cloud treatment. Generally, the ice cover area ratio of 0.1 and 0.9 is used as the basis to distinguish the lake ice phenology. The excel file contained in the data set can further obtain four lake ice phenological parameters: Fus, fue, bus, bue, and 92 lakes. Two parameters, Fus and bue, can be obtained.

2020-01-19

Dataset of lake ice type in alpine region V1.0 (2015-2018)

Lake ice is an important parameter of the cryosphere, its change is closely related to the climate parameters such as temperature and precipitation, and can directly reflect the climate change, so it is an important indicator of the regional climate parameter change. However, because the research area is often located in the area with poor natural environment and few population, large-scale field observation is difficult to carry out, so sentinel 1 satellite data is used. The spatial resolution of 10 m and the temporal resolution of better than 30 days are used to monitor the changes of different types of lake ice, which fills the observation gap. Hmrf algorithm is used to classify different types of lake ice. Through time series analysis of the distribution of different types of lake ice in three polar regions with a part area of more than 25km2, a lake ice type data set is formed. The distribution of different types of lake ice in these lakes can be obtained. The data includes the serial number of the processed lake, the year in which it is located and the serial number in the time series, vector and other information. The data set includes the algorithm used, sentinel-1 satellite data used, imaging time, polar area, lake ice type and other information. Users can determine the changes of different types of lake ice in the time series according to the vector file.

2020-01-18

River lake ice range / coverage data set v1.0

There are many lakes in the Qinghai Tibet Plateau. The glacial phenology and duration of lakes in this region are very sensitive to regional and global climate change, so they are used as the key indicators of climate change research, especially the comparative study of the three polar environmental changes of the earth. However, due to its poor natural environment and sparse population, there is a lack of conventional field measurement of lake ice phenology. The lake ice was monitored with a resolution of 500 meters by using the normalized difference snow index (NDSI) data of MODIS. The traditional snow map algorithm is used to detect the lake daily ice amount and coverage under the condition of sunny days, and the lake daily ice amount and coverage under the condition of cloud cover are re determined through a series of steps based on the spatiotemporal continuity of the lake surface conditions. Through time series analysis, 308 lakes larger than 3km2 are identified as effective records of lake ice range and coverage, forming a daily lake ice range and coverage data set, including 216 lakes.

2019-11-05

Daily lake ice extent and cover proportion dataset of the Tibetan Plateau based on MODIS (2002-2018)

There are many lakes on the Tibetan Plateau. The phenology and duration of lake ice age in this area is very sensitive to regional and global climate change, so it is used as a key indicator of climate change research, especially the comparative study of environmental changes in the Earth's three poles. However, due to its harsh natural environment and sparse population, it lacked routine field measurements of lake ice phenology. Using the Moderate-resolution Imaging Spectroradiometer (MODIS) to normalize the Different Snow Index (NDSI) data, the lake ice was monitored at a resolution of 500 meters to fill the observation gap. The traditional snow map algorithm was used to detect the daily ice volume and coverage extent of lakes under sunny condition. The spatial and temporal continuity of lake surface conditions was applied to re-determine the daily ice volume and coverage extent of lakes under cloud cover condition through a series of steps. Time series analysis was performed on 308 lakes larger than 3 k㎡ to determine effective record of lake ice extent and coverage, then to form a daily lake ice extent and coverage data set. And furthermore, four lake ice phenological parameters: freeze-up start ( FUS), freeze-up end (FUE), break-up start (BUS), and break-up end (BUE) can be obtained from 216 lakes of the data set, and two parameters: FUS and BUE can be obtained from the other 92 lakes.

2019-10-21