Current Browsing: Precipitation


Meteorological data set of Ali desert environment comprehensive observation and research station (2017-2018)

The dataset records the Ali Desert Environment Integrated Observation and Research Station, the meteorological dataset for 2017-2018, and the time resolution of the data is days. It includes the following basic meteorological parameters: temperature (1.5 meters from the ground, once every half hour, unit: Celsius), relative humidity (1.5 meters from the ground, half an hour, unit: %), wind speed (1.5 meters from the ground, half an hour) , unit: m / s), wind direction (1.5 meters from the ground, once every half hour, unit: degrees), air pressure (1.5 meters from the ground, once every half hour, unit: hPa), precipitation (24 hours, unit: mm ), water vapor pressure (unit: Kpa), evaporation (unit: mm), downward short-wave radiation (unit: W/m2), upward short-wave radiation (unit: W/m2), downward long-wave radiation (unit: W/m2) ), upward long-wave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). Data collection location: Observation Field of Ali Desert Environment Comprehensive Observation and Research Station, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Longitude: 79°42'5"; Latitude: 33°23'30"; Altitude: 4264 meters.

2019-11-25

Meteorological observation data of comprehensive observation and research station of alpine environment in Southeast Tibet (2017-2018)

This data set includes the daily average data of air temperature, relative humidity, precipitation, wind speed, wind direction, net radiation, air pressure, etc. of Southeast Tibet station from January 1, 2017 to December 31, 2018.

2019-11-22

Meteorological observation data of Everest integrated atmospheric and environmental observation research station (2017-2018)

This data set includes the daily average values of air temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, p2.5 concentration, short wave radiation, etc. observed by the comprehensive observation and research station of atmosphere and environment of Everest from 2017 to 2018.

2019-11-22

Meteorological observation data of Namuco multi circle comprehensive observation and research station (2017-2018)

This data set includes the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, etc. observed at Namuco station from January 1, 2017 to December 31, 2018.

2019-11-21

The atmospheric forcing data in the Heihe River Basin (2000-2018)

Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019.

2019-11-06

The dataset of spatio-temporal water resources distribution in the source regions of Yangtze River and Yellow River (1998-2017)

This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.

2019-09-22

The daily microwave precipitation dataset of Tibetan Plateau(2015-2017)

The strong spatial and temporal changes of precipitation often make it impossible to accurately know the spatial distribution and intensity changes of precipitation during the precipitation observation of conventional foundation stations. Satellite microwave remote sensing can overcome this limitation and achieve global scale precipitation and cloud observation. Compared with infrared/visible light, which can only reflect cloud thickness and cloud height, microwave can penetrate the cloud, and also use the interaction between precipitation and cloud particles in the cloud and microwave to detect the cloud and rain more directly. This data use the surface precipitation, obtained by the DPR double wave band precipitation radar carried by GPM, as the true value, soil temperature/humidity of NDVI, DEM and ERA5 as reference data. And the multi-band passive brightness temperature data of GMI is used to invert the instantaneous precipitation intensity during the warm season (May-September) in Tibetan Plateau, then the result is re-sampled to the spatial resolution of 0.1°and accumulated them to a day.

2019-09-22

WATER: Dataset of CMA operational meteorological stations observations in the Heihe River Basin

The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.

2019-09-15

HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.17) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the automatic weather station (AWS) measurements from site No.17 in the flux observation matrix from 12 May to 17 September, 2012. The site (100.36972° E, 38.84510° N) was located in an orchard in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.63 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). One of the infrared temperature sensors (IRT_2) was adjusted to a zenith angle of 50° after 6 August. The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.8) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the automatic weather station (AWS) measurements from site No.8 in the flux observation matrix from 14 May to 21 September, 2012. The site (100.37649° E, 38.87254° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1550.06 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020C; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15