Data set of Lake elements in Hoh Xil area, Qinghai Province (1990)

This data set is the data set of Lake elements in Hoh Xil area of Qinghai Province, which records the main lake characteristics and water quality sampling and analysis data in detail. There are many lakes in Hoh Xil area of Qinghai Province, which is one of the concentrated distribution areas of lakes in Qinghai Tibet Plateau. The basic characteristics of Lake Development in this area are: large quantity, many types and complex structure. According to preliminary statistics, there are 107 lakes with an area of more than 1km2, with a total area of 3825km2 and a lake degree of about 0.05. The original data of the data set is digitized from the book "natural environment of Hoh Xil region in Qinghai Province", which includes 35 main lake characteristic data and 60 lake water chemical analysis data. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.

0 2021-04-09

Time space matching data set of water and soil resources in the Qinghai Tibet Plateau (1970-2016)

The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.

0 2021-04-09

The dataset of wetland pattern changes on the Tibet Plateau (1970s, 2000s)

Based on the Tibetan Plateau wetland pattern in the 1970s interpreted using the Mire Map of China compiled by the scientific expeditions and the Tibetan Plateau wetland pattern in the 2000s interpreted using Landsat TM (resolution: 30 m) satellite image data, The Mire Map of China in the 1970s was interpreted. Visual interpretation of Landsat TM images from 2006 to 2009: a) Based on the natural zoning of the whole district, the interpretation keys of different wetland types were established with reference to the data obtained by different physical geography units and actual surveys. b) Based on the established interpretation keys, wetlands with an area greater than 10 square kilometers were primarily extracted by artificial visual interpretation method (excluding permanent, seasonal rivers and riverbeds). c) According to the interpretation results in combination with the topographic map (resolution: 90 m) of the study area and the actual situation of the wetland plaque investigation within the study area, the plaque modification and supplementation were artificially carried out. The data of the 1970s were obtained by interpretation of the Mire Map of China compiled by the Tibetan Plateau scientific expeditions of the Changchun Institute of Geography. The wetland data of the 2000s was derived from Landsat TM (resolution: 30 m) satellite image data. The data are of good quality.

0 2021-04-09

Hydrological data of Kafinigan hydrological station in Amu Darya River Basin,Central Asia (2020)

This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal

0 2021-03-09

Hydrological data of Central Asia's SYR River Basin (2020)

This data is the hydrological data of kuzhan hydrological station in the middle reaches of the Xier river. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 2, 2019 to December 5, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m) Site location: 40 ° 17 ′ 38 ″ n, 69 ° 40 ′ 18 ″ e, 320m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. After restart, the first data is 0, resulting in the hourly average value of 0. On December 5, 2019, the power supply will return to normal after transformation 6、 There are some missing and - 8.191mm abnormal data in rainfall data, which should be eliminated and explained. Data missing 4.10-5.3 data, supplemented, - 8.191mm, similar abnormal data has been marked

0 2021-03-09

Water quality observation data of Ranwu lake at Southeast Tibet station of Chinese Academy of Sciences (2014-2020)

The data set is measured by YSI exo2 water quality multi parameter measuring instrument on the Bank of middle lake of Ranwu lake from April to November every year from 2014 to 2020. The sampling interval is 0.25s-1s. The data is the average value after the instrument is stabilized. The sampling geographic coordinates are: longitude 96.795296, latitude 29.459066, altitude 3925m. The measurement parameters are water temperature, conductivity, dissolved oxygen and turbidity, and the specific parameter unit is indicated in the meter. Data culling part of the obvious outliers, the document is empty, please pay attention to the use. The data will be updated from time to time, and can be used by researchers of water chemistry, Lake microorganism or lake physical and chemical properties in Ranwu Lake Basin.

0 2021-02-28

Lake volume changes on the Tibetan Plateau during 1976–2019 (>1 km2)

We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.

0 2021-02-01

Flood distribution of historical streams and rivers in Qinghai Tibet scientific research area

The flood distribution data of historical streams and rivers in Qinghai Tibet scientific research area include longitude and latitude, location of occurrence, basic triggering type, date, damage and other attribute information. Data source: survey statistics of disaster investigation department. On the basis of the original data, the necessary data quality control. According to the type description of the original data, the main triggering factors, the location of the occurrence, combined with the 30 meter foundation terrain, the flood type is analyzed and divided. The data can be used as a reference for the analysis of historical flood disasters. The data format is point vector SHP format, which can be directly opened with ArcGIS. The data can be used for flood risk analysis in the corresponding area of the Qinghai Tibet Plateau.

0 2021-01-29

Basic meteorological data of Yigong (2018-2019)

This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.

0 2021-01-27

Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-01-26