Current Browsing: 2011


Dataset of temperature obtained from 10m meteorological tower with 4 levels in Hulugou sub-basin of the Heihe River Basin (2011)

1. Data overview: This data set is the daily scale meteorological gradient data of Qilian station from October 1, 2011 to December 31, 2011 (installed at the end of September 2011). The observation of vg1000 gradient observation system started on October 1, 2011, recording data every 30 mins, and finally generating daily scale data. Through the long-term monitoring of wind speed and direction, air temperature and humidity, radiation and other conventional meteorological elements, combined with high-precision, high scanning frequency data collector for data storage and processing analysis. 2. Data content: The main observation elements include four layers of air temperature, humidity and two-dimensional ultrasonic wind, rain and snow meter, eight layers of ground temperature, soil moisture, etc. 3. Space time scope: Geographic coordinates: longitude: longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m

2020-03-11

Runoff dataset in Hulugou outlet of Qilian station in the upstream of Heihe River (2011)

1. Data overview: this data set is the total surface runoff of hulugou drainage basin controlled by the outlet hydrological section of Qilian station from January 1, 2011 to November 2, 2011. 2. Data content: the flow data of the hydrological section at the outlet of hulugou, and the flow of the hydrological section at the outlet of the drainage basin is regularly observed at 08:00, 14:00 and 20:00 every day (the ls45a rotating cup type current meter produced by Chongqing Huazheng Hydrological Instrument Co., Ltd. is used for measurement). At the same time, hobo pressure water level gauge is used to monitor the change of water level in real time and establish the relationship between water level and discharge. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2962.5m.

2020-03-11

Eddy covariance data in Hulugou sub-basin of alpine Heihe River (October - December, 2011)

1. Data overview: Eddy covariance system is a micrometeorological measurement method.It USES the principle of vorticity correlation to measure the material exchange and energy exchange of the atmosphere cushion surface with a fast response sensor.The core of open circuit eddy covariance system is composed of CR1000 data collector, CSAT3 3d ultrasonic wind speed and direction sensor, and li-7500 open circuit CO2/H2O gas analyzer (EC150).The eddy covariance system is a newly purchased instrument of this project, which takes a long time to order. It was installed in early October 2011, and the data is relatively short.This data set is the vorticity covariance data of qilian station from October 1, 2011 to December 31, 2011 at 30min. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration (mg/m^3), water vapor concentration (g/m^3), pressure press (KPa).The data sampling rate is 10Hz per second. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m

2020-03-11

Evaporation and precipitation dataset in Hulugou outlet in Upstream of Heihe River (2011)

1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2011 to December 31, 2011.The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11

Frozen depth of frozen ground in Hulugou sub-basin of the Heihe River Basin (2011)

1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m

2020-03-11

Transpiration dataset of Qinhai spruce stand during the growing season in Pailougou watershed (2011-2013)

It is of great significance to carry out the quantitative study on the evapotranspiration of forest vegetation in Qilian Mountain, to correctly understand the hydrological function of the forest ecosystem in Qilian Mountain, to understand the water cycle process and to develop the hydrological model of the watershed, and to make a reasonable forest management plan. Forest evapotranspiration is mainly composed of soil surface evaporation, vegetation transpiration and canopy interception water evaporation. Traditional evapotranspiration research methods can be divided into two categories: actual measurement and estimation. The actual measurement methods include hydrology method, micro meteorology method and plant physiology method; the estimation method is to calculate Evapotranspiration by model, mainly including analysis model and empirical model. However, none of these methods can effectively distinguish forest transpiration from evaporation. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The transpiration water consumption of Picea crassifolia forest was measured by thermal pulse technique, and the scale was extended to the stand scale to indicate the transpiration water consumption of Picea crassifolia forest.

2020-03-10

Forest investigation data about Qinghai spruce stand in Pailougou watershed (2011)

Forest survey is the application of measurement, tree measurement, remote sensing and other professional techniques and methods, survey, sampling and computer technology and other means to understand the quantity, quality, distribution and growth of forests within a specific range, so as to provide basic data for the formulation of forestry policies and scientific management of forests, as well as for scientific research. In the drainage ditch watershed of Qilian Mountain, there are three plots of Picea crassifolia forest in Qinghai Province, each of which is 2800m, 2900m and 3000m above sea level. Plot 01 is 20 * 30m and plot 02-09 is 20 * 35m. The traditional methods were used to investigate the tree height, DBH, base diameter and crown diameter of Picea crassifolia, providing basic data for the study of ecological hydrology of Picea crassifolia forest in the upper reaches of Heihe River.

2020-03-10

Leaf area index of Qinhai spruce stand at 2800 m above sea level in Pailougou watershed (2011)

Leaf area index, also known as leaf area coefficient, refers to the multiple of the total area of plant leaves in the land area per unit land area. Leaf area index is an important structural parameter of ecosystem, which is used to reflect the number of plant leaves, the change of canopy structure, the life activity of plant community and its environmental effect, to provide structured quantitative information for the description of material and energy exchange on the canopy surface, and to balance the energy of carbon accumulation, vegetation productivity and the interaction between soil, plant and atmosphere, Vegetation remote sensing plays an important role. The leaf area index and other indexes of Picea crassifolia forest in Pailugou watershed were measured by plant canopy imager CI - 110

2020-03-10

Soil moisture content of Qinhai spruce stand at 2800 m above sea level in Pailougou water shed (2011)

Soil moisture, also known as soil moisture. It's the water that stays in the pores of the soil. The main source of soil water in Picea crassifolia forest is atmospheric precipitation, which is the only source of water absorbed by Picea crassifolia to maintain its growth. This data is the soil moisture data of Picea crassifolia forest measured by the soil moisture intelligent neutron instrument.

2020-03-10

Physiological index analysis data of typical desert plants in Heihe River basin (July 2011)

In mid-july 2011, photosynthetic organs (leaves or assimilating branches) of typical desert plants were collected and brought back to the laboratory in a liquid nitrogen tank for determination. The analysis indexes mainly include soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.

2020-03-10