Current Browsing: 2011


HiWATER: 250m/1km month compositing Fraction Vegetation Cover (FVC) product of the Heihe River Basin

250m/1km month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data is produced by using MODIS vegetation index products MOD13A2 and MOD13Q1 based on dimidiate pixel model.

2019-09-14

HiWATER: CCD reference image in core experimental area of flux observation matrix in the midstream of the Heihe River Basin

This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system

2019-09-12

HiWATER:Dataset of fractional snow cover area in the Heihe River Basin

The data set provided the cloudless Fractional Snow Cover area (FSC) time-series product basing on the MODIS data and covered the Heihe River Basin from January 2010 to December 2013. They also provide the high spatial (500 m) and temporal (1 day) resolution. Firstly, the end-member were automatically extracted by the fast autonomous spectral end-member determination (N-FINDR) maximizing volume iteration algorithm. Combining N-FINDR with the orthogonal subspace projection (OSP) approach, we propose an improved end-member extraction algorithm using a maximizing, volume-based iterative method. All the 6 end-members were extracted including snow, soil, water, bare land, vegetation, and cloud, respectively. Then, the 10-day spectral library time series based on prior knowledge of Heihe basin are built for 2009. The primary data were produced using the fully constrained least squares (FCLS) linear spectral mixture analysis method by the spectral library. Finally,the cubic spline interpolation algorithm were used to the eliminate the cloud pixels completely and obtain the data set. The data are validated by the fractional snow cover derived from Landsat imagery and the results indicate that the improved algorithm can obtain the end-member information accurately, and the retrieved fractional snow cover has better accuracy than the MODIS fractional snow-cover product (MOD10A1). So the data set can provide more accurate input for the hydrology and climate model.

2019-09-12

HiWATER: 30m month compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin

30m month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data constructs multi-angle observation data sets by using China's domestic satellite HJ/CCD data with high temporal resolution (2 days after networking) and spatial resolution (30m) , and divides the country into different vegetation divisions and land types. The conversion coefficients of NDVI and FVC are calculated respectively, and use the calculated conversion coefficient lookup table and monthly compositing NDVI to produce the regional monthly compositing FVC products. The 30m month compositing FVC product in the Heihe River Basin can directly obtain the vegetation coverage ratio through high-resolution data, and mitigate the influence of low-resolution data heterogeneity; in addition, selecting the typical period of vegetation growth change, by fitting the vegetation index of each pixel time series to obtain the growth curve parameters that correspond to each pixel; then the land use map and the vegetation classification map are combined to find the representative uniform pixels of the region for training the conversion coefficients of the vegetation index. Compared with the ASTER reference FVC results, the 30m/month compositing FVC product in the Heihe River Basin is slightly higher than the ASTER reference result, but the overall deviation is not large, and the maximum value of the root mean square error (RMSE) of the product and the reference value is less than 0.175. In addition, compared with the ground survey data of Huailai experimental site in Hebei Province, the 30 m/month compositing FVC products generally reflect the seasonal variation of vegetation growth, and the deviation from the ground survey data is less than 0.1. At the same time, compared with the ground measurements of vegetation coverage in many watersheds in Northeast, North China and Southeast China, the overall error between the compositing FVC products and the ground measurements is less than 0.2. In all, the 30m/month compositing FVC data set of Heihe River Basin comprehensively utilizes multi-temporal and multi-angle remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products, so as to better serve the application of remote sensing data products.

2019-07-24