River lake ice phenology data in QPT V1.0 (2002-2018)

River lake ice phenology is sensitive to climate change and is an important indicator of climate change. 308 excel file names correspond to Lake numbers. Each excel file contains six columns, including daily ice coverage information of corresponding lakes from July 2002 to June 2018. The attributes of each column are: date, lake water coverage, lake water ice coverage, cloud coverage, lake water coverage and lake ice coverage after cloud treatment. Generally, the ice cover area ratio of 0.1 and 0.9 is used as the basis to distinguish the lake ice phenology. The excel file contained in the data set can further obtain four lake ice phenological parameters: Fus, fue, bus, bue, and 92 lakes. Two parameters, Fus and bue, can be obtained.

0 2021-04-09

An updated glacier inventory (2018) for the Alaska region using Landsat 8 OLI

On the basis of RGI6.0, we use remote sensing and geographic information system technology to update the glacier inventory data in Alaska. The updated glacier inventory uses a data source for 2018 Landsat OLI spatial resolution 15m remote sensing image, and the method used is manual interpretation. The results show that the Alaska Glacier inventory includes 27043 glaciers with a total area of 81285km2. The uncertiany of this data is 4.3%. The data will provide important data support for the study of glacier change in Alaska and the regional and global impact of glacier change in the context of global change.

0 2021-03-29

Long-term series of daily snow depth dataset in China (1979-2020)

This data set is an upgraded version of the “Long-term series of daily snow depth dataset in China". This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2019, with a spatial resolution of 0.25 degrees. The original data used to derive the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2020) which were archived in the National Snow and Ice Data Center (NSIDC). Because the brightness temperatures come from different sensors, there is a certain system inconsistency among them. Therefore, before the derivation of snow depth, the inter-sensor calibration were performed to improve the temporal consistency of the brightness temperature data. Based on the calibrated brightness temperatures, the modified Chang algorithm developed by Dr. Tao Che, was used to retrieve daily snow depth. The algorithm details were introduced in the data specification document- “Long-term Sequence Data Set of China Snow Depth (1979-2020) Introduction. doc". The projection of the data set is latitude and longitude. The data of each day was stored in a file, and the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data specification document.

0 2021-03-11

Antarctic ice sheet surface elevation data (2003-2009)

The Antarctic ice sheet elevation data were generated from radar altimeter data (Envisat RA-2) and lidar data (ICESat/GLAS). To improve the accuracy of the ICESat/GLAS data, five different quality control indicators were used to process the GLAS data, filtering out 8.36% unqualified data. These five quality control indicators were used to eliminate satellite location error, atmospheric forward scattering, saturation and cloud effects. At the same time, dry and wet tropospheric, correction, solid tide and extreme tide corrections were performed on the Envisat RA-2 data. For the two different elevation data, an elevation relative correction method based on the geometric intersection of Envisat RA-2 and GLAS data spot footprints was proposed, which was used to analyze the point pairs of GLAS footprints and Envisat RA-2 data center points, establish the correlation between the height difference of these intersection points (GLAS-RA-2) and the roughness of the terrain relief, and perform the relative correction of the Envisat RA-2 data to the point pairs with stable correlation. By analyzing the altimetry density in different areas of the Antarctic ice sheet, the final DEM resolution was determined to be 1000 meters. Considering the differences between the Prydz Bay and the inland regions of the Antarctic, the Antarctic ice sheet was divided into 16 sections. The best interpolation model and parameters were determined by semivariogram analysis, and the Antarctic ice sheet elevation data with a resolution of 1000 meters were generated by the Kriging interpolation method. The new Antarctic DEM was verified by two kinds of airborne lidar data and GPS data measured by multiple Antarctic expeditions of China. The results showed that the differences between the new DEM and the measured data ranged from 3.21 to 27.84 meters, and the error distribution was closely related to the slope.

0 2020-08-13

Daily cloudless MODIS snow albedo dataset of Babaohe River basin (2008-2014)

The proportion data set of daily cloudless MODIS snow cover area in babaohe river basin (2008.1.1-2014.6.1) was obtained after cloud removal processing using a cloud removal algorithm based on cubic spline function interpolation on the basis of daily cloudless MODIS snow cover product-mod10a1 (tang zhiguang, 2013). This data set adopts the projection method of UTM (horizontal axis isometric cutting cylinder), with a spatial resolution of 500m, and provides Daily Snow Albedo daily-sad results for the babao river basin.The data set is a daily file from January 1, 2008 to June 1, 2014.Each file is the snow albedo result of the day, with a value of 0-100 (%), is the ENVI standard file, and the naming rule is: mod10a1.ayyyyddd_h25v05_snow_sad_grid_2d_reproj_babaohe_nocloud.img, where YYYY represents the year, DDD stands for Julian day (001-365/366).The file can be opened directly with ENVI or ARCMAP software. The original MODIS snow cover data products processed by declouding are derived from MOD10A1 products processed by the us national snow and ice data center (NSIDC). This data set is in HDF format and USES sinusoidal projection. The attributes of the cloud-free MODIS albedo data set (2008.1.1-2014.1.1) in babaohe river basin are composed of the spatial and temporal resolution, projection information and data format of the dataset.

0 2020-03-29