The dataset of spatio-temporal water resources distribution in the source regions of Yangtze River and Yellow River (1998-2017)

This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.

0 2021-04-09

Observational snow depth dataset of the Tibetan Plateau (Version 1.0) (1961-2013)

The Tibetan Plateau has an average altitude of over 4000 m and is the region with the highest altitude and the largest snow cover in the middle and low latitudes of the Northern Hemisphere regions. Snow cover is the most important underlying surface of the seasonal changes on the Tibetan Plateau and an important composing element of ecological environment. Ice and snow melt water is an important water resource of the plateau and its downstream areas. At the same time, plateau snow, as an important land-surface forcing factor, is closely related to disastrous weather (such as droughts and floods) in East Asia, the South Asian monsoon and in the middle and lower reaches of the Yangtze River. It is an important indicator of short-term climate prediction and one of the most sensitive responses to global climate change. The snow depth refers to the vertical depth from the surface of the snow to the ground. It is an important parameter for snow characteristics and one of the conventional meteorological observation elements. It is the key parameter of snow water equivalent estimation, climate effect studies of snow cover, the basin water balance, the simulation and monitoring of snow-melt, and snow disaster evaluation and grading. In this data set, the Tibetan Plateau boundary was determined by adopting the natural topography as the leading factor and by comprehensive consideration of the principles of altitude, plateau and mountain integrity. The main part of the plateau is in the Tibetan Autonomous Region and Qinghai Province, with an area of 2.572 million square kilometers, accounting for 26.8% of the total land area of China. The snow depth observation data are the monthly maximum snow depth data after quality detection and quality control. There are 102 meteorological stations in the study area, most of which were built during the 1950s to 1970s. The data for some months or years for sites existing during this period were missing, and the complete observational records from 1961 to 2013 were adopted. The temporal resolution is daily, the spatial coverage is the Tibetan Plateau, and all the data were quality controlled. Accurate and detailed plateau snow depth data are of great significance for the diagnosis of climate change, the evolution of the Asian monsoon and the management of regional snow-melt water resources.

0 2021-04-09

snow pit data in Altay (2015/2016)

Snow pits were observed daily at Altay base station(lon:88.07、lat: 44.73) from November 27, 2015 to March 26, 2016. Parameters include: snow stratification, stratification thickness, density, particle size, temperature. The frequency of observation was daily. The particle size was observed by a microscope with camera, the density was observed by snowfork, snow shovel and Snow Cone, and the temperature was automatically observed by temperature sensor. The observation time was 8:00-10:100 am local time. The snow particle size is observed according to the natural stratification of snow. The snow particles of each layer are collected, and at least 2 photos are taken. The long axis and short axis of at least 10 groups of particles are measured by corresponding software. Unit: mm. The density was observed at equal intervals, snowfork every 5 cm, snow shovel every 10 cm, snow cone to observe the density of the whole snow layer, and the density of each layer was observed three times. The unit is g / cm3. The height of temperature observation is 0cm, 5cm, 10cm, 15cm, 25cm, 35cm, 45cm, 55cm. The recording frequency was once every 1 minute. The unit is OC.

0 2021-04-02

Absorptive impurity data of snow and ice in Altay (2016-2017) v1.0

Soluble organic carbon (DOC) in snow and ice can effectively absorb the solar radiation in the ultraviolet and near ultraviolet band, which is also one of the important factors leading to the enhancement of snow and ice ablation. Through the continuous snow samples from November 2016 to April 2017 in Altay area, the data of DOC, TN and BC of snow in kuwei station in Altay area were obtained through the experimental analysis and test with the instrument. The time resolution was weeks and the ablation period was daily. 1. Unit: Doc and TN unit μ g-1 (PPM), BC unit ng g-1 (ppb), MAC unit M2 g-1

0 2021-03-29

Time series data of snow area ratio in the Arctic (2000-2019)

The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.

0 2021-03-29

MODIS daily cloud-free snow cover area product for Sanjiangyuan from 2000 to 2018

The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2018-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.

0 2021-03-28

Remote sensing products of snow depth in Sanjiangyuan (1980-2018)

This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.For header file information, refer to the data set header.txt.

0 2021-03-28

30km Gridded dataset of Snowline altitude in High Mountain Asia (2001-2019)

High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.

0 2021-03-26

Login free download screening search engine test

At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download. At present, the metadata is only the test data of the system platform, and the search engine test is blocked by login free download.

0 2021-03-25

Long-term series of daily snow depth dataset in China (1979-2020)

This data set is an upgraded version of the “Long-term series of daily snow depth dataset in China". This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2019, with a spatial resolution of 0.25 degrees. The original data used to derive the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2020) which were archived in the National Snow and Ice Data Center (NSIDC). Because the brightness temperatures come from different sensors, there is a certain system inconsistency among them. Therefore, before the derivation of snow depth, the inter-sensor calibration were performed to improve the temporal consistency of the brightness temperature data. Based on the calibrated brightness temperatures, the modified Chang algorithm developed by Dr. Tao Che, was used to retrieve daily snow depth. The algorithm details were introduced in the data specification document- “Long-term Sequence Data Set of China Snow Depth (1979-2020) Introduction. doc". The projection of the data set is latitude and longitude. The data of each day was stored in a file, and the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data specification document.

0 2021-03-11