Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2019) V2

The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the daily 1 km spatial resolution all-weather land surface temperature data set (2003-2018) V1 in Western China released in 2019, this data set (V2) adopts a new generation method, namely satellite thermal infrared remote sensing reanalysis data integration method (RTM) based on the new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that the land surface temperature data set has good image quality and accuracy, which is not only completely seamless in space, but also highly consistent with MODIS LST products widely used in the current academic circles in amplitude and spatial distribution. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST during the day / night, with R2 of 0.93 ~ 0.97 / 0.93 ~ 0.98; MBE of -0.42 ~ 0.25 K / - 0.35 ~ 0.19 K; RMSE of 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; under non clear sky conditions, the MBE of the data set during the day / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K. The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2019, and it will be updated continuously; the temporal resolution is twice daily (corresponding to the two transit times of aqua MODIS in the day and night respectively); the spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this dataset is limited to Western China and its surrounding areas (72 ° e-104 ° e, 20 ° n-45 ° n) with the Qinghai Tibet Plateau as the core. Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating medium resolution spatial seam LST – Tibetan Plateau) for user's convenience.

0 2021-04-14

1km grid data set of ecological vulnerability in agricultural and pastoral areas of Qinghai Tibet Plateau

Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.

0 2021-04-09

Grading map of agricultural suitability on the Tibet Plateau (2018)

This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.

0 2021-04-09

County level statistics data of Tibetan Plateau (1980-2015)

The data set contains agricultural economic data of all counties and regions in the Tibetan Plateau in 1980-2015, and covering the total number of households and total population in rural areas, agricultural population, rural labor force, cultivated land, paddy field area, the dry land area, power of agricultural machinery, agricultural vehicles, mechanical ploughing area, irrigation area, consumption of chemical fertilizers electricity use, gross output value of agriculture, forestry, animal husbandry and fishery, the output of cattle, pig, sheep, meat, poultry, and fish, the sown area of grain, the output of grain, cotton, oil and all kinds of crops, and characteristic agricultural products and livestock production and other relevant data.The data came from the statistical yearbook of the provinces included in the Tibetan Plateau.The data are of good quality and can be used to analyze the socio-economic and agricultural development of qinghai-tibet plateau.

0 2021-04-09

The ASTER_GDEM dataset of the Tibetan Plateau (2011)

The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

0 2021-04-09

Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-01-26

Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. <br><br> 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. <br><br> 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). <br><br> 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-01-26

Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. <br><br> 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. <br><br> 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). <br><br> 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-01-25

Land use data set in Central Asia l(1970, 2005, 2015)

In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.

0 2021-01-19

The spatial distribution data set of transportation, water systemand other infrastructure in hanbantota and Colombo area (2016-2018)

The spatial distribution data set of infrastructures such as traffic and water system in the areas of hambantota and Colombo (2016-2018) is obtained by extracting classification information from high-resolution remote sensing images. Based on the 1-2m remote sensing image data, the distribution information of road, water, coastline, and coastal facilities are extracted respectively. On this basis, the road, and other layers of OSM are superimposed with the extracted results and images. Through visual inspection, errors are found and the extracted results are corrected. Finally, the hambantota node area dataset is formed road, water system, coastline, and coastal facilities distribution layer of the region. This data set contains the data information of two key node regions of hambantota and Colombo.

0 2020-12-25