Current Browsing: Basic geographic


Primary road network dataset of the Heihe Rriver basin (2010)

Data overview: this set of data mainly includes the spatial distribution of major roads in the heihe river basin, the attributes include road classification and road coding, and the data base year is 2010. Data preparation process: this set of data is based on the topographic map, remote sensing image and the latest road traffic map updated by the transportation department of gansu province in 2009. Data description: there are two important attributes of the data, namely, road classification and road code. The road classification is divided into national road, provincial road, county road, township road and private road. The road code is defined in accordance with the highway grade code of the traffic department.

2020-06-05

Meteorological observation stations distribution map of the Heihe River Basin

This data set includes the information of 21 conventional meteorological observation stations in Heihe River Basin and its surrounding areas, of which Wutonggou and Quixote stations have been cancelled in the 1980s, and other stations have operated since the establishment of the station. Station name, longitude and latitude 1. Mazong mountain 97.1097 41.5104 2. Yumen town 97.5530 39.8364 3. Wutonggou 98.3248 40.4697 4. Jiuquan 98.4975 39.7036 5. Jinta 98.9058 39.9988 6. Dingxin 99.5117 40.3080 7. Gaotai 99.7907 39.3623 8. Linze 100.165 39.1385 9. Sunan 99.6178 38.8399 10. Yeniugou 99.5830 38.4167 11. Tole 98.0147 39.0327 12. Ejina Banner 101.088 41.9351 13. Guaizi Lake 102.283 41.3662 14. Zhangye 100.460 38.9124 15. Shandan 101.083 38.7746 16. Folk music 100.826 38.4376 17. Alxa Right Banner 101.429 39.1407 18. Yongchang 101.578 38.1771 19. Qilian 100.238 38.1929 20. Gangcha 100.111 37.2478 21. Menyuan 101.379 37.2513 22. Gekkot 99.7063 41.9183 23. Jiayuguan 98.2241 39.7975

2020-06-05

The Heihe River basin boundary (1985、1995、2000、2005、2010)

Heihe river basin is the second largest inland river basin in China. In the past 30 years, a relatively perfect drainage observation system has been established in heihe river basin, which has become an important inland river research base in China.River basin is an important natural research unit, but the boundary of heihe river basin is not unified. In order to facilitate the use of data by users, we collected and sorted out 5 kinds of heihe river basin boundaries commonly seen in the literature: 1) from 1985 to 1986, China began to conduct systematic research on the heihe river basin as a whole. On the basis of basic investigation and a large number of data mastered, the early heihe river basin map was drawn with an area of 138,900 km ^ 2.The whole basin is divided into three hydrologic balance zones, which are: the balance zone of heihe main stream system, the balance zone of beida river main stream system and the balance zone of ma ying - feng leshan front water system. 2) sub project national key scientific research project of the ninth five-year plan "in heihe river basin water resources reasonable use and the economic society and ecological environment coordinated development research", considering the integrity of the county-level administrative units, on the basis of the first basin boundary using the administrative boundary of basin boundary was revised, formed the "digital heihe" published information system (http://heihe.westgis.ac.cn) of the heihe river basin boundary, watershed area of 128700 km ^ 2.The division of hydrological unit inherits the original idea and is divided into three river systems, namely the eastern river system, the central river system and the western river system. 3) in the comprehensive control plan of heihe river basin of the ministry of water resources, the area of heihe river basin is determined as 142,900 km ^ 2, and the hydrologic unit is divided into two independent water systems in the central and western regions and the east, with an area of 27,000 km2 and 116,000 km ^ 2 respectively. 4) in 2002-2006 in the national integrated water resources planning, "the Yellow River" (piece of) integrated water resources planning working group in 2005, the establishment "the northwest rivers and water resources and its exploitation and utilization of investigation evaluation report, briefly, to the secondary and tertiary area as the unit of water resources, to complete a series of natural geography and social economy statistical tables, maps and other data.In this comprehensive plan, the area of heihe river basin is about 151,700 km ^ 2, and the plan does not give a more detailed sub-watershed division plan. 5) based on the high-precision digital elevation model (SRTM and ASTER GDEM), the boundary of heihe river basin was determined by using the GIS hydrologic analysis method.The boundary has been verified by remote sensing and field investigation, and the present situation of modern water resources utilization is considered in the process of basin boundary determination and sub-basin division.

2020-06-05

Administrative division of the Heihe River Basin

China's administrative regions are basically divided into three levels: provinces (autonomous regions, municipalities directly under the central government), counties (autonomous counties, cities), townships (nationality townships, towns). In order to meet the needs of user statistics and cartography, we have published 1:1 million national administrative division data sets according to the national basic geographic information center. The administrative division data of Heihe River Basin were prepared. This data reflects the current situation of administrative divisions in Heihe River basin around 2008, including the information of provincial, regional and county-level administrative divisions. Its main attributes (such as area, code of administrative divisions, province (autonomous region), city (region, autonomous prefecture)) come from China's administrative divisions published in 2008.

2020-06-05

Watershed boundary of the Yellow River upstream (2012)

I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. The watershed is an important natural unit. Using the SRTM-DEM and ASTER-GEDEM data sets as the data source, under the ArcGIS software platform, the method of combining river burning method and river scalar method is used to extract the upper reaches of the Yellow River basin. The boundary of the basin from the source area of ​​the Yellow River to the upper reaches of the Yellow River in Hekou Town. Ⅱ. Data processing description Using SRTM-DEM and ASTER-GDEM issued by the United States as data sources, under the ArcGIS software platform, the method of combining river burning method and river scalar method was used to extract the upper reaches of the Yellow River basin. Because the ratio of the rivers from the Three Lakes Estuary to Hekou Town is extremely small, there is a certain error in the boundary of the basin. Ⅲ. Data content description The map is stored in ArcGIS and .shp files. The river basin boundary spans five provinces (autonomous regions) of Qinghai, Sichuan, Gansu, Ningxia, and Inner Mongolia, with a total area of ​​55.06 × 104 km2. Ⅳ. Data usage description Watershed boundary is an important natural unit for hydrology, soil erosion, and non-point source pollution research. By extracting watershed boundaries, the migration range of soil erosion and non-point source pollution can be delineated.

2020-06-05

Administrative division of the Tarim River Basin (2000)

The dataset is the vector map of the administrative boundary of the Tarim River Basin, with a scale of 250,000 and projection: latitude and longitude. The data includes spatial data and attribute data, mainly the name and administrative code of the county boundary of the Tarim River Basin.

2020-06-04

Tarim River Basin boundary dataset (2000)

The data is the boundary distribution map of the Tarim River Basin with a scale of 250,000. Projection: latitude and longitude. This data include spatial data and attribute data of the Tarim River Basin sub-watershed. The attribute data fields are: Area (area), Perimeter (perimeter), WRRNM (watershed name), WRRCD ( watershed coding)

2020-06-04

Dataset of slope aspect at 30m spatial resolution over the Loess Plateau (2014)

The data set contains the slope aspect (resolution: 30 m) factor affecting soil erosion on the Loess Plateau and the slope aspect data extracted from the elevation data of the Loess Plateau. Each theme map is divided into frames according to the 1:250000 scale standard map cartography method, and the frames are denoted by the 1:250000 scale standard map cartography number. The geographical coordinate is WGS1984; the accuracy can meet the requirements of regional scale hydrology and soil erosion analysis and forecasting.

2020-06-03

Reservoirs map of the North_Slope_of_Tianshan River Basin (2000)

The data is the reservoir distribution dataset of the north slope of Tianshan River Basin, which is comprehensively prepared by using topographic map and remote sensing image. The scale is 250000, and the projection is latitude and longitude. The data includes spatial data and attribute data, and the attribute field is Name (reservoir name), reflecting the reservoir distribution status of River Basin in the northern foot of Tianshan Mountain around 2000.

2020-06-01

Rail map of the North_Slope_of_Tianshan River Basin (2000)

The data is the railway distribution map of the north slope of Tianshan River Basin, with a scale of 25000 and the projection is longitude and latitude. the data includes spatial data and attribute data, and the attribute field is code (railway code).

2020-06-01