Current Browsing: China


Permafrost map of China and its neighbors based on Circum-Arctic Map of Permafrost and Ground Ice Conditions (2001)

Field description: Num_code (Frozen soil attribute code) Combo (Permafrost properties) extent (Extent of frozen ground) content (Ice content) Attributes comparison are as follows: (1) Comparison table of frozen soil properties: 0 (No information) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes) 24 - o (Ocean/inland seas) 25 - ld (Land) (2) Comparison table of frozen soil scope c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches (0 - 10%) (3) Ice content comparison table h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%)

2020-04-01

1: 1 million wetland data of Jiangsu Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

2020-03-31

1:1 million wetland data of Zhejiang Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

2020-03-31

Shanghai 1:1 million wetland data

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

2020-03-31

Long time series vegetation index data set of spot & vegetation in China (1998-2007)

The VEGETATION sensor sponsored by the European Commission was launched by SPOT-4 in March 1998. Since April 1998, SPOTVGT data for global vegetation coverage observation has been received by Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides relevant parameters (such as calibration coefficient). Finally, the Belgian flemish institute for technological research (Vito)VEGETATION processing Centre (CTIV) is responsible for preprocessing into global data of 1km per day. Pretreatment includes atmospheric correction, radiation correction, geometric correction, production of 10 days to maximize the synthesized NDVI data, setting the value of -1 to -0.1 to -0.1, and then converting to the DN value of 0-250 through the formula DN=(NDVI+0.1)/0.004. The data set is a subset extraction from China, including spectral reflectance of four bands synthesized every 10 days and 10 days' maximum NDVI. It is data from 1998 to 2007 with a spatial resolution of 1km and a temporal resolution of 10 days. File format: Hfr and img files. The file naming rule is: CHN _ NDV _ YYYMMDD, where YYYYMMDD is the date of the day represented by the file and is also the main identifier different from other files. The remote sensing image files with suffix. IMG and. HDF used by users to analyze vegetation index can be opened in ENVI and ERDAS software. Coordinate system and projection Plate_Carree (Lon/Lat) PROJ_CENTER_LON 0.000000 PROJ_CENTER_LAT 0.000000 PIXEL_SIZE_UNITS DEGREES/PIXEL PIXEL_SIZE_X 0.0089285714 PIXEL_SIZE_Y 0.0089285714 SEMI_AXIS_MAJ 6378137.000000 SEMI_AXIS_MIN 6356752.314000 UL_LON (DEG) 73.000000 UL_LAT (DEG) 54.000000 LR_LON (DEG) 135.500000 LR_LAT (DEG) 5.000000 Corner coordinates are: Corner Coordinates: Upper Left ( 69.9955357, 55.0044643) Lower Left ( 69.9955357, 14.9955358) Upper Right ( 137.0044641, 55.0044643) Lower Right ( 137.0044641, 14.9955358) Where Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner.

2020-03-31

China regional atmospheric driving dataset based on geostationary satellites and reanalysis data (2005-2010)

Based on the geostationary satellites and reanalysis data, the China Regional Atmospheric Driving Dataset is a set of atmospheric driving data sets with high spatiotemporal resolution prepared by the China Meteorological Administration, with a spatial resolution of 0.1 ° × 0.1 ° and a temporal resolution of 1 Hours, covering a range of 75 ° -135 ° east longitude and 15 ° -55 ° north latitude, include 6 elements of near-surface temperature, relative humidity, ground pressure, near-surface wind speed, incident solar radiation on the ground, and ground precipitation rate. The preparation process of precipitation products is as follows: The 6-hour cumulative precipitation estimated from the multi-channel data of the China Fengyun-2 geostationary satellite is integrated with the 6-hour cumulative precipitation from conventional ground observations to obtain 6-hour cumulative precipitation spatial distribution data, and then use the high-resolution cloud classification information retrieved from the multi-channel inversion of the geostationary satellites determines the interpolation time weight of the cumulative precipitation and obtains an estimated one-hour cumulative precipitation. The preparation process of the radiation data is as follows: The surface incident solar radiation based on FY-2C, uses the radiation transmission model DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium) to calculate the radiation transmission and obtains the data of surface incident solar radiation in China. Preparation process of other elements: The space and time interpolation method is used for the NCEP reanalysis data of 1.0 ° × 1.0 ° to obtain driving factors such as near-surface air temperature, relative humidity, ground pressure, and near-surface wind speed of 0.1 ° × 0.1 ° per hour. Physical meaning of each variable: Meteorological Elements || Variable Name || Unit || Physical Meaning | Surface temperature || TBOT || K || Surface temperature (2m) | Surface pressure || PSRF || Pa || Surface pressure | Relative humidity on the ground || RH || kg / kg || Relative humidity near the ground (2m) | Wind speed on the ground || WIND || m / s || Wind speed near the ground (anemometer height) | Surface incident solar radiation || FSDS || W / m2 || Surface incident solar radiation | Precipitation Rate || PRECTmms || mm / hr || Precipitation Rate For more information, see the data documentation published with the data.

2020-03-31

Plant functional types map in China (1 km)

Vegetation functional type (PFT) is a combination of large plant species according to the ecosystem function and resource utilization mode of plant species. Each planting functional type shares similar plant attributes, which simplifies the diversity of plant species into the diversity of plant function and structure.The concept of vegetation-functional has been advocated by ecologists especially ecosystem modelers.The basic assumption is that globally important ecosystem dynamics can be expressed and simulated through limited vegetative functional types.At present, vegetation-functional model has been widely used in biogeographic model, biogeochemical model, land surface process model and global dynamic vegetation model. For example, the land surface process model of the national center for atmospheric research (NCAR) in the United States has changed the original land cover information into the applied vegetation-functional map (Bonan et al., 2002).Functional vegetation has been used in the dynamic global vegetation model (DGVM) to predict the changes of ecosystem structure and function under the global change scenario. 1. Functional classification system of vegetation 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2. Drawing method China's 1km vegetation function map is based on the climate rules of land cover and vegetation function conversion proposed by Bonan et al. (Bonan et al., 2002).Ran et al., 2012).MICLCover land cover map is a blend of 1:100000 data of land use in China in 2000, the Chinese atlas (1:10 00000) the type of vegetation, China 1:100000 glacier map, China 1:10 00000 marshes and MODIS land cover 2001 products (MOD12Q1) released the latest land cover data, using IGBP land cover classification system.The evaluation shows that it may be the most accurate land cover map on the scale of 1km in China.Climate data is China's atmospheric driven data with spatial resolution of 0.1 and temporal resolution of 3 hours from 1981 to 2008 developed by he jie et al. (2010).The data incorporates Princeton land-surface model driven data (Sheffield et al., 2006), gewex-srb radiation data (Pinker et al., 2003), TRMM 3B42 and APHRODITE precipitation data, and observations from 740 meteorological stations and stations under the China meteorological administration.According to the evaluation results of RanYouhua et al. (2010), GLC2000 has a relatively high accuracy in the current global land cover data set, and there is no mixed forest in its classification system. Therefore, the mixed forest in the MICLCover land cover diagram USES GLC2000 (Bartholome and Belward, 2005).The information in xu wenting et al., 2005) was replaced.The data can be used in land surface process model and other related researches.

2020-03-30

Land cover products of China

China's land cover data set includes 5 products: 1) glc2000_lucc_1km_China.asc, a Chinese subset of global land cover data based on SPOT4 remote sensing data developed by the GLC2000 project. The data name is GLC2000.GLC2000 China's regional land cover data is directly cropped from global cover data. For data description, please refer to http : //www-gvm.jrc.it/glc2000/defaultGLC2000.htm 2) igbp_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR remote sensing data supported by IGBP-DIS, the data name is IGBPDIS; IGBPDIS data was prepared using the USGS method, using April 1992 to March 1992 The AVHRR data developed global land cover data with a resolution of 1km. The classification system adopts a classification system developed by IGBP, which divides the world into 17 categories. Its development is based on continents. Applying AVHRR for 12 months to maximize synthetic NDVI data, 3) modis_lucc_1km_China_2001.asc, a subset of MODIS land cover data products in China, the data name is MODIS; MODIS China's regional land cover data is directly cropped from global cover data, and its data description please refer to http://edcdaac.usgs.gov/ modis / mod12q1v4.asp. 4. umd_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR data produced by the University of Maryland, the data name is UMd; the five bands of UMd based on AVHRR data and NDVI data are recombined to suggest a data matrix, using Methodology carried out global land cover classification. The goal is to create data that is more accurate than past data. The classification system largely adopts the classification scheme of IGBP. 5) westdc_lucc_1km_China.asc, China ’s 2000: 100,000 land cover data organized and implemented by the Chinese Academy of Sciences, combined with Yazashi conversion (the largest area method), and finally obtained a land use data product of 1km across the country, data name WESTDC. WESTDC China's regional land cover data is based on the results of a 1: 100,000 county-level land resource survey conducted by the Chinese Academy of Sciences. The land use data were merged and converted into a vector (the largest area method). The Chinese Academy of Sciences resource and environment classification system is adopted. 2: Data format: ArcView GIS ASCII 3: Mesh parameters:       ncols 4857       nrows 4045       xllcorner -2650000       yllcorner 1876946       cellsize 1000       NODATA_value -9999 4: Projection parameters:       Projection ALBERS       Units METERS       Spheroid Krasovsky       Parameters:       25 00 0.000 / * 1st standard parallel       47 00 0.000 / * 2nd standard parallel       105 00 0.000 / * central meridian       0 0 0.000 / * latitude of projection's origin       0.00000 / * false easting (meters)       0.00000 / * false northing (meters)

2020-03-29

Seismic catalogue of east China (2300 BC-2500 AD)

The data includes earthquakes at various levels across the country from 2300 BC to 2005 AD. There are a total of more than 330,000 catalogs, each of which includes earthquake time, epicenter longitude, epicenter latitude, focal depth, positioning accuracy, and magnitude. This data was first released by the National Seismological Bureau. The China Earthquake Catalog contains a Mapinfo layer (Total_0510Time) and files with the extensions .TAB, .MAP, .DAT, .ID. Their functions are as follows: TAB: the main file, including the table data structure and entity data format fields; MAP: a geographic data file containing map objects; ID: the index file of the graphic object file (MAP); DAT: Form data file.

2020-03-28

1:1 million wetland data of Sichuan province (2000)

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

2020-03-28