Current Browsing: China


Digital elevation model of China (1KM)

DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system

2019-09-15

Distribution map of frozen ground in China based on Map of Snow, Ice and Frozen Ground in China (1998)

The scanned picture of the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Shi Yafeng, Meidesheng, 1988) is geometrically corrected and then digitized in the data set, and by taking altitude and latitude into account in combination with the continuity of permafrost, the frozen soil is divided into the predominant permafrost of high-latitude permafrost, island talik permafrost and island permafrost; high-altitude permafrost and mountain permafrost (including Altai, Tianshan Mountain, Qilian Mountain, Hengduan, the Himalayas and Taibai Mountain in East China, Huanggangliang and Changbai Mountain), and the plateau permafrost (the Tibetan Plateau), which is divided into predominant permafrost and island permafrost; and seasonal frozen soil, instantaneous frozen soil and nonfrozen areas.

2019-09-12

Dataset of soil properties for land surface modeling over China

The dataset includes soil physical and chemical attributes: pH value, organic matter fraction, cation exchange capacity, root abundance, total nitrogen (N), total phosphorus (P), total potassium (K), alkali-hydrolysable N, available P, available K, exchangeable H+, Al3+, Ca2+, Mg2+, K+ , Na+, horizon thickness, soil profile depth, sand, silt and clay fractions, rock fragment, bulk density, porosity, structure, consistency and soil color. Quality control information (QC) was provided. The resolution is 30 arc-seconds (about 1 km at the equator). The vertical variation of soil property was captured by eight layers to the depth of 2.3 m (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) for convenience of use in the Common Land Model and the Community Land Model (CLM). 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point

2019-09-12

Geocryological regionalization and classification map of the frozen soil in China (1:10,000,000) (2000)

These data are digitized for the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 million) (Guoqing Qiu et al., 2000; Youwu Zhou et al., 2000), adopting a geocryological regionalization and classification dual series system. The geocryological regionalization system and classification system are used on the same map to reflect the commonality and individuality of the formation and distribution of frozen soil at each level. The geocryological regionalization system consists of three regions of frozen soil: (1) the frozen soil region of eastern China; (2) the frozen soil region of northwestern China; and (3) the frozen soil region of southwestern China (Tibetan Plateau). Based on the three large regions, 16 regions and several subregions are further divided. In the division of the geocryological boundary in the frozen soil area, the boundary between major regions I and III mainly consults the results of Bingyuan Li (1987). The boundary between major regions II and III is the northern boundary of the Tibetan Plateau, which is the Kunlun Mountains-Altun Mountains-Northern Qilian Mountains and the piedmont line. The boundary between major regions I and II is in the area of Helan Mountain-Langshan Mountain. The boundary of the secondary region is divided by the geomorphological conditions in regions II and III. However, in region I, it is mainly divided by the ratio of the annual temperature range A to the annual mean temperature T, and the frozen depths of various regions are taken into consideration. The classification system is divided into 8 types based on the continuity of frozen soil, the time of existence of frozen soil and the seasonal frozen depth. The various classifications of boundaries are mainly taken from the "Map of Snow, Ice and Frozen Ground in China" (1:4 million) (Yafeng Shi et al., 1988) and consult some new materials, whereas the seasonal frozen soil boundary is mainly based on the weather station data. The definitions of each classification are as follows: (1) Large permafrost: the continuous coefficient is 90%-70%; (2) Large-island permafrost: the continuous coefficient is 70%-30%; (3) Sparse island-shaped permafrost: the continuous coefficient is <30%; (4) Permafrost in the mountains; (5) Medium-season seasonal frozen soil: the maximum seasonal frozen depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal frozen depth that can be reached is <1 m; (7) Short-term frozen soil: less than one month of storage time; and (8) Nonfrozen soil. According to the data, China's permafrost areas sum to approximately 2.19 × 106 km², accounting for 22.83% of China's territory. Among those areas, the mountain permafrost is found over 0.42×106 km2, which is 4.39% of the territory of China. The seasonal frozen soil area is approximately 4.76×106 km², accounting for 49.6% of China's territory, and the instantaneous frozen soil area is approximately 1.86×106 km², i.e., 19.33% of China's territory. For more information, please see the references (Youwu Zhou et al., 2000).

2019-09-11