Current Browsing: Lake ice/river ice


The lake ice phenology dataset of the Northern Hemisphere (1978-2018)

Lake ice phenology is a seasonal cyclical feature that describes lake ice coverage. The change of lake ice phenology is an important part of carbon, water and energy process study, and one of the sensitive factors of climate change. This dataset is a lake ice phenology based on passive microwave inversion, including lake ice phenology of 200 lakes in the Tibetan Plateau and high latitudes area of the Northern Hemisphere from 2002 to 2018 (including freeze-up start date, freeze-up end date, break-up start date, and break-up end date of the lakes), data of some lakes can date back to 1978. This data is basically consistent with the MODIS monitoring results from the same time with an interpretation error of 2-4 days. Users can use this data to conduct climate change study in the Northern Hemisphere.

2020-10-13

Moderate resolution MODIS river lake ice cover dataset in high latitude region of northern hemisphere (2002-2018)

The medium-resolution MODIS river and lake ice phenology data set in the high latitudes of the northern hemisphere from 2002 to 2019 is based on the Normalized Difference Snow Index (NDSI) data of the Moderate Resolution Imaging Spectroradiometer(MODIS). Daily lake iceextent and coverage under clear-sky conditions was examined byemploying the conventional SNOWMAP algorithm, and thoseunder cloud cover conditions were re-determined using the temporal and spatial continuity of lake surface conditions througha series of steps.The lake ice phenology information obtained in this dataset was highly consistent with that from passive microwave data at an average correlation coefficient of 0.91 and an RMSE value varying from 0.07 to 0.13.

2020-08-05

30 m resolution lake ice type data set of Qinghai Tibet Plateau, Siberia and alaga river lake region, 2015-2019

Lake ice is an important parameter of Cryosphere. Its change is closely related to climate parameters such as temperature and precipitation, and can directly reflect climate change. Therefore, lake ice is an important indicator of regional climate parameter change. However, due to the poor natural environment and sparsely populated area, it is difficult to carry out large-scale field observation, The spatial resolution of 10 m and the temporal resolution of better than 30 days were used to monitor the changes of different types of lake ice, which filled in the blank of observation. The hmrf algorithm is used to classify different types of lake ice. The distribution of different types of lake ice in some lakes with an area of more than 25km2 in the three polar regions is analyzed by time series to form the lake ice type data set. The distribution of different types of lake ice in these lakes can be obtained. The data includes the sequence number of the processed lake, the year and its serial number in the time series, and vector The data set includes the algorithm used, sentinel-1 satellite data, imaging time, polar region, lake ice type and other information. Users can determine the change of different types of lake ice in time series according to the vector file.

2020-08-05

Inventory dataset of glacial lakes in the Sikkim Region, India (2000)

This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.

2020-06-10

Inventory of glacial lakes in Pakistan (2003-2004)

This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory adopts the Landsat remote sensing data and reflects the status of glacial lakes in the Pakistan region from 2003 to 2004. 2. In terms of spatial coverage, the glacial lake inventory covers the Swat, Chitral, Gilgit, Hunza, Shigar, Shyok, Upper, Indus, Shingo, Astor and Jhelum river basins in the upper reaches of the Indus River. 3. The glacial lake inventory data include the glacial lake code, glacial lake type, glacial lake area, distance between the glacier and the glacial lake, glaciers related to the glacial lake, etc. For detailed descriptions of the data, please refer to the data file and report.

2020-06-10

Glacial lake inventory of the Pumqu Basin in the Himalayan Region of China (2004)

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resources Centre for Asia and the Pacific (UNEP/RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute (CAREERI). 9. This glacial lake cataloging uses Landsat (TM and ETM), Aster and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in the Himalayas in 2004. 10. Glacial lake catalogue coverage: the Himalayan region, Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali) and others. 11. Glacial Lake cataloging includes glacial lake cataloging, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 12. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For a detailed data description, please refer to the data file and report.

2020-06-10

Inventory of glacial lakes in Nepal (2000)

This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

2020-06-09

Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

2020-06-04

Glacial lake inventory of High Mountain Asia

The data set integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively.The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology research in the mountain cryosphere region

2020-05-11

Data on glacial lakes in the TPE (V1.0) (1990, 2000, 2010)

There are three types of glacial lakes: supraglacial lakes, lakes attached to the end of the glacier and lakes not attached to the end of the glacier. Based on this classification, the following properties are studied: the variation in the number and area of glacial lakes in different basins in the Third Pole region, the changes in extent in terms of size and area, distance from glaciers, the differences in area changes between lakes with and without the supply of glacial melt water runoff, the characteristics of changes in the glacial lake area with respect to elevation, etc. Data source: Landsat TM/ETM+ 1990, 2000, 2010. The data were visually interpreted, which included checking and editing by comparing the original image with Google Earth images when the area was greater than 0.003 square kilometres. The data were applied to glacial lake changes and glacial lake outburst flood assessments in the Third Pole region. Data type: Vector data. Projected Coordinate System: Albers Conical Equal Area.

2020-05-04