Disaster statistical dataset of Qinghai Tibet Plateau (1950-2002)

This data set contains the statistical information of natural disasters in Qinghai Tibet Plateau in the past 50 years (1950-2002), including drought, snow disaster, frost disaster, hail, flood, wind disaster, lightning disaster, cold wave and strong cooling, low temperature and freezing damage, gale sandstorm, insect disaster, rodent damage and other meteorological disasters. Qinghai and Tibet are the main parts of the Qinghai Tibet Plateau. The Qinghai Tibet Plateau is one of the Centers for the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the international scientific and technological circles to study climate and ecological environment changes. Its complex terrain conditions, high altitude and severe climate conditions determine that the ecological environment is very fragile, It has become the most frequent area of natural disasters in China. The data were extracted from "China Meteorological Disaster Canon · Qinghai volume" and "China Meteorological Disaster Canon · Tibet Volume", which were manually input, summarized and proofread.

0 2021-04-09

Dataset of soil erosion intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

1) The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015m the grid resolution is 300m.2) The data of soil erosion intensity are obtained by using the Chinese soil erosion prediction model (CSLE). The formula of soil erosion prediction model includes rainfall erosivity factor, soil erodibility factor, slope length factor, slope factor, vegetation cover and biological measure factor, engineering measure factor and tillage measure factor. Rainfall erodibility factors are calculated from the daily rainfall data by the US Climate Prdiction Center (CPC); soil erodibility factors, engineering measures factors and tillage measures factors are obtained from the first water conservancy census data; slope length factors and slope factors are obtained by resampling after calculating 30 m elevation data; vegetation coverage and biological measures factors are obtained by combining fractional vegetation cover with land use data and rainfall erodibility proportionometer. The fractional vegetation cover is calculated by MODIS vegetation index products through pixel dichotomy. 3) Compared with the data of soil erosion intensity in the same region in the same year, there is no significant difference and the data quality is good.4) the data of soil erosion intensity is of great significance for studying the present situation of soil erosion in Pan third polar 65 countries and better carrying out the development policy of the area along the way.

0 2021-04-09

Dataset of Soil Erosion (water) Intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

1)The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015, and the grid resolution is 300m. 2) China soil erosion prediction model (CSLE) was used to calculate the soil erosion amount of more than 4,000 investigation units on the Qinghai-Tibet Plateau. Soil erosion was interpolated according to land use on Qinghai-Tibet Plateau. According to the soil erosion classification standard, the soil erosion intensity map of Qinghai-Tibet Plateau was obtained. 3) By comparing the differences of three-stage soil erosion intensity data, it conforms to the actual change law and the data quality is good. 4) The data of soil erosion intensity are of great significance to the study of soil erosion in the Qinghai-Tibet Plateau and the sustainable development of local ecosystems. In the attribute table, "Value" represents the erosion intensity level, from 1 to 6, the value represents slight, mild, moderate, intense, extremely intense and severe. "BL" represents the percentage of echa erosion intensity in the total area.

0 2021-04-09

Landslides and debris flows in Bangladesh-China-India-Myanmar Economic Corridor(2010-2020)

There are 428 large and medium-sized landslides in the Bangladesh China India Myanmar economic corridor. The number of landslides in Myanmar is the largest, reaching 304, accounting for 71% of the total landslides, followed by China and India. The number of landslides is 71 and 52, accounting for 17% and 12% of the total landslides, respectively. There is only one landslide in Bangladesh. According to the material composition of landslide, it can be divided into rock landslide and soil landslide. There are 343 rock landslides in this area, accounting for 80% of the total number of landslides, and 85 soil landslides, accounting for 20% of the total number of landslides. Rock landslides are mainly distributed in the north of China, India and Myanmar, while soil landslides are mainly distributed in the middle and south of Myanmar. A total of 1569 debris flows were interpreted in the Bangladesh China India Myanmar corridor, including 574 gully debris flows and 995 slope debris flows. In the eastern part of the study area, debris flows are mainly distributed on both sides of Lancang River, Nujiang River, Mojiang River and Honghe River, and they are distributed in the north-south direction along these rivers. In the central part of the study area, debris flows are distributed in the ruokai mountain area. Compared with the gully type debris flow, the scale and harm of slope debris flow are much smaller. In this study, the correlation analysis of debris flow is mainly aimed at the gully type debris flow.

0 2021-01-04

Landslides and debris flows in China-Mongolia-Russia Economic Corridor(2010-2020)

The China Mongolia Russia economic corridor starts from China in the East, passes through Mongolia in the west to Russia, and crosses the Mongolian Plateau, West Siberian plain and Eastern European Plain. There are great differences in natural environment and complex geological conditions in the region. Driven by regional differences in structure, earthquake, meteorology, hydrology and ecology, landslides are widely distributed in China Mongolia Russia economic corridor. Based on remote sensing images, the landslide and debris flow disasters in China Mongolia Russia economic corridor are interpreted. Statistics show that there are 396 landslide disasters in China Mongolia Russia economic corridor, and the landslide disaster area is between 0.0006km2 ~ 8.57km2. The watershed area within 100km on both sides of the railway line, with a total area of 1.43 × 106km2, has identified 1336 debris flow gullies in the China Mongolia Russia economic corridor.

0 2021-01-04

Danger Assessment Dataset of Storm Surge Disasters at ten meters Scale of hambantota

On the basis of the global tropical cyclone track dataset, the global disaster events and losses dataset, the global tide level observation dataset and DEM data, coastline distribution data, land cover information, population and other related data of Hambantota, indicators related to the disaster danger of storm surge in each unit are extracted and calculated using ten meters grid as evaluation unit. Based on statistical method, the tide level of every 20 years, 50 years and 100 years is estimated. The comprehensive index of storm surge disaster danger is constructed, and the danger index of storm surge is obtained by using the weighted method, which can be used to evaluate the danger level of storm surge in each assessment unit. The data set includes 20-year, 50-year and 100-year hazard assessment results of the port area of Hambantota.

0 2020-12-25

Vulnerability Assessment Dataset of Storm Surge Disasters at ten meters Scale of hambantota (2015-2018)

On the basis of the global tropical cyclone track dataset, the global disaster events and losses dataset, the global tide level observation dataset and DEM data, coastline distribution data, land cover information, population and other related data of the Belt and Road, indicators related to the vulnerability of storm surge in each unit are extracted and calculated using 100 meter grid as evaluation unit, such as population density, land cover type, etc. The comprehensive index of storm surge vulnerability is constructed, and the vulnerability index of storm surge is obtained by using the weighted method. Finally, the storm surge vulnerability index is normalized to 0-1, which can be used to evaluate the vulnerability level of storm surge in each assessment unit.

0 2020-12-24

Risk Assessment Dataset of Storm Surge Disasters at ten meters Scale of hambantota (2015-2018)

On the basis of the global tropical cyclone track dataset, the global disaster events and losses dataset, the global tide level observation dataset and DEM data, coastline distribution data, land cover information, population and other related data of the Belt and Road, indicators related to the disaster risk and vulnerability of storm surge in each unit are extracted and calculated using10 meter grid as evaluation unit, such as historical intensity of tide level frequency of storm historic arrival, historical loss, population density, land cover type, etc. The comprehensive index of storm surge disaster risk is constructed, and the risk index of storm surge is obtained by using the weighted method. Finally, the storm surge risk index is normalized to 0-1, which can be used to evaluate the risk level of storm surge in each assessment unit. The data set includes 20-year, 50-year, and 100-year corresponding risks.

0 2020-12-24

Dataset of soil water erosion modulus with 2.5 m resolution in 22 watersheds of the Xinjiang Uygur Autonomous Region(2019)

1) The data includes the soil erosion modulus of 22 watersheds with a resolution of 2.5 m in the year of 2019 in the Xinjiang Uygur Autonomous Region. 2)Based on the surface layer of rainfall erosivity R, soil erodibility K, slope length factor LS, vegetation coverage FVC, and rotation sampling survey unit, the Chinese soil erosion model (CSLE) was used to calculate soil erosin modulus in 22 watersheds respectively. Through spatial data processing (including chart linking and transformation, vector-grid conversion, and resampling), R, K, LS factors were calculated from the regional thematic map of rainfall erosivity, soil erodibility, and DEM. By half-month FVC, NPV, half-month rainfall erosivity data, we calculated the value of B factors in each sampling watershed. The value of E factor was calculated based on the remote sensing interpretation result and engineering measure factor table. The value of tillage factor T was obtained from tillage zoning map and tillage measure table. And then the soil erosion modulus in each sampling watershed was calculated by the equation: A=R•K•LS•B•E•T. The selection of 22 watersheds was based on the layout of sampling survey in pan-third polar region. 3) Compared with the data of soil erosion intensity in the same region in the same year, there is no significant difference and the data quality is good.4) the data of soil erosion modulus is of great significance for studying the present situation of soil erosion in Pan third polar region, and it is also crucial for the implementation of the development policy of the Silk Road Economic Belt and the 21st-Century Maritime Silk Road.

0 2020-06-11

Landslides and debris flows in CPEC

The China-Pakistan Economic Corridor, north from Kashgar of China and south to the Gwadar seaport of Pakistan, with a total length of 000 km, is the key to linking the north and south Silk Road. Due to the complex geology, landform, climate, hydrology conditions, landslides and debris flows are very active in this area. Through the combination of field investigation and image interpretation, the symbols of typical landslide and debris flow images were established. Based on interactive interpretation and field investigation verification, the spatial distribution of landslides and debris flows within the scope of CPEC was identified, which provides important data support for risk analysis of landslide and debris flow disasters in CPEC and disaster prevention and reduction.

0 2020-04-13