Current Browsing: snow facies


MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)

Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.

2019-09-15

Snow cover dataset of the Tibetan Plateau - multisource fusion algorithm (2008-2010)

This dataset is the snow cover dataset based on the MODIS fractional snow cover mapping algorithm Coupled Regional Approach (CRA). The CRA algorithm mainly consists of three parts. (1) First, the N-FINDR (Volume Iterative Approach) and OSP (Orthogonal Subspace Projection) are used to automatically extract the endmember according to the settings (extracting 30 end endmembers). (2) On the basis of automatic extraction, combined with the IGBG land cover type map, six types of endmembers of snow, vegetation, cloud, soil, rock and water are selected by the manual screening method, and an annual spectrum database is established according to the 2009 image. There are 3 spectra in the early, middle and late months and 36 spectra a year. (3) The established spectral database is used as a priori knowledge, and based on prior knowledge, the fully constrained linear unmixing method (FCLS) for subpixel decomposition is used to obtain the fractional snow cover products. The NDSI ratio algorithm with improved topographic effect is used to obtain the snow cover area, the spatiotemporal data are then interpolated, and, finally, the multisource data fusion with the AMSR-E microwave snow depth product is undertaken. The dataset adopts a latitude and longitude (Geographic) projection method. The datum is WGS84, and the spatial resolution is 0.005°. It provides the daily cloudless snow cover area map of the Tibetan Plateau from 2008 to 2010. The data set is stored by year and consists of 3 folders from 2008 to 2010. Each folder contains the classification results of the daily snow cover of the current year. It is a tif file with the naming rule YYYY***.tif, in which YYYY represents the year (2008-2010), and *** represents the day (001~365/ 366). It can be opened directly with ARCGIS or ENVI.

2019-09-15

The monthly MODIS snow cover product of the Tibetan Plateau (2001-2005)

The parameter inversion study project of soil moisture and snow water equivalent on the Tibetan Plateau in the past 20 years is part of the key research plan of Environmental and Ecological Science for West China of the National Natural Science Foundation of China. The person in charge is Jiancheng Shi, a researcher at the Institute of Remote Sensing Applications of the Chinese Academy of Sciences. The project ran from January 2004 to December 2007. The data collection of the project: the Monthly MODIS Snow Cover Product of Tibetan Plateau (2001-2005). Based on the image data acquired by MODIS, combined with ASTER image data, the data set carried out snow cover area classification and change analysis at a subpixel level on the Tibetan Plateau. The research mainly focused on studying the subpixel snow cover area classification algorithm, including the statistical regression method and the mixed-pixel decomposition method using the normalized snow index. In the mixed-pixel decomposition, a linear mixed model was adopted, and snow and non-snow end members were automatically extracted using the normalized snow index and the normalized vegetation index. On the basis of the subpixel snow cover area classification algorithm, the snow cover area variation on the Tibetan Plateau was analyzed. Using the method of establishing a decision tree, clouds and snow were detected, cloud-removal was performed, and the subpixel of the Tibetan Plateau was formed by synthesis and mosaicking of the time series images. The snow cover area classification database analyzes and describes the spatial distribution and variation characteristics of the snow cover area of the Tibetan Plateau.

2019-09-12