Current Browsing: hydrology/water cycle


Hydrological datasets of the Heihe river basin (1990-1995)

Based on the "western data center", the daily discharge from three field observation stations (zamashk, Yingluoxia, Qilian) since 1990-1995 is sorted out.

2020-06-05

The daily gridded precipitation dataset for Arctic Basin (1980-2018)

There is a lack of a set of high-resolution precipitation gridded data with long time series in the main basin of the Arctic. This dataset provides daily precipitation in the main basin of the Arctic. The range of data set is from 45 ° N to 76.15 °N. The metadata used includes: the meteorological station data during 1980-2015 obtained from GSOD and the reanalysis data of ERA-interim during 1980-2018. This dataset was obtained by bias correction of ERA-interim data with the improved quantile mapping method, and the background data used for bias correction is the interpolation gridded precipitation, in interpolation process, we not only take into account the effect of elevation, but fully consider the influence of wind on gauge measurements, the gauge used in interpolation all undergo bias adjustment. This dataset performs well both in region scale and cell grid scale, with high accuracy, which providing a set of reliable precipitation gridded data for the hydrological research of the Arctic.

2020-04-23

The data set contains all single glacial reserves (in KM3) in the Tibetan Plateau of 1970s and 2000s. This data set comes from the result data of the paper entitled "consolidating the Randolph glacier inventory and the glacier inventory of China over the Qinghai titanium plate and investigating glacier changes since the mid-20th century". The first draft of this paper has been completed and is planned to be submitted to earth system science data. The 1970s basic glacier catalog data in the dataset is extracted from Randolph glacier Inventory data set, 2000s basic glacial catalogue is from China's second glacial catalogue data set. Based on the glacial boundary extracted from the two data sets and combined with the grid based bedrock elevation data set (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m) and the glacial table obtained by a slope dependent method Based on the surface elevation data set, the single glacier reserves in the two catalogues are calculated. In addition, the calculation results of single glacier reserves obtained in this study have been compared and verified with the calculation results of partial glacier reserves, relevant remote sensing data sets, and the global glacier thickness data set based on the average of multiple glacier model sets in multiple directions, and the errors in the calculation results have also been quantified. The establishment of the data set is expected to provide the data basis for the future regional water resources estimation and glacier ablation research, and the acquisition of the data also provides a new idea for the future glacier reserves research.

2020-04-14

China alpine region month precipitation dataset (CAPD) (1954-2014)

The monthly precipitation data set of China's alpine mountains includes the qilian mountains (1960-2013), tianshan mountains (1954-2013) and Yangtze river source (1957-2014). The distributed hydrological model needs high-precision spatial distribution information of precipitation as input.Because of the scarcity of stations, the precipitation interpolation at stations cannot reflect the spatial distribution of precipitation in the alpine mountainous areas.Generation method of this dataset: (1) collect precipitation data of national meteorological stations and hydrological stations in various regions, and add precipitation observation data of field stations of Chinese academy of sciences above an altitude of 4000m; (2) use the temperature data of each station to correct the collected precipitation data of different precipitation types; (3) establish the relationship between precipitation data and altitude, longitude and latitude, and fit monthly to generate monthly precipitation data set of 1km scale. The interpolation year of this data is 1954-2014. The data projection method is Albers projection. The spatial interpolation precision is 1-km, and the time precision is monthly data.The results show that the interpolation precipitation is reliable. The data is stored in ASCII files. The file names of the monthly precipitation data files of tianshan mountain and Yangtze river source are in the form yyyymm.txt. YYYY is the year and MM is the month.The monthly precipitation data of qilian mountain is named as: month_10001.txt, this file is the precipitation data of January 1960, successively month_10002.txt is the precipitation of February 1960, and month_10013.txt is the precipitation data of January 1961,......Month_10648.txt represents the precipitation data for December 2013.Each ASCII file represents the grid precipitation data of the day in mm.

2020-03-27

Modeling ecohydrological processes and spatial patterns in the upstream of the Heihe river basin (1960-2014) V3.0

The output data of the distributed eco hydrological model (gbehm) in the upper reaches of Heihe River includes the spatial distribution data series of 1-km grid. Region: Heihe River (Yingluo gorge), Beida River (Binggou new land), temporal resolution: Monthly Scale, spatial resolution: 1km, period: 1960-2014. Data include precipitation, evapotranspiration, runoff depth, soil volume water content (0-100cm). All data are in ASCII format. Please refer to the basin.asc file in the reference directory for the spatial range of the basin. Projection parameters of model results: sphere_Arc_Info_Lambert_Azimuthal_Equal_Area

2020-03-27

Modeling ecohydrological processes and spatial patterns in the upper of Heihe river basin V1.0 (2015-2070)

The output data of the distributed eco hydrological model (gbehm) in the upper reaches of Heihe River includes the spatial distribution data series of 1-km grid. Region: upper reaches of Heihe River (Yingluo gorge), temporal resolution: Monthly Scale, spatial resolution: 1km, period: 2015-2070 (future scenario). The data include precipitation, evapotranspiration, runoff depth and average temperature. All data are in ASCII format. Please refer to the basin.asc file in the reference directory for the spatial range of the basin. Projection parameters of model results: sphere_Arc_Info_Lambert_Azimuthal_Equal_Area

2020-03-27

Grassland interception dataset of Tianlaochi watershed in Qilian Mountain

This data includes experimental data of grassland interception control and observation data of maximum water holding capacity of grassland. The maximum water holding capacity experiment was carried out in 2011. The main vegetation types selected are Carex, Polygonum viviparum, Plantago asiatica and Potentilla chinensis. The maximum water holding capacity experiment was carried out on each type of samples and the samples were photographed. The specific data obtained are shown in the document. The grassland canopy interception was carried out in the growing season of 2012, and was completed by artificial rainfall control experiment. At the end of the growing season, the main types of grassland in the basin were sampled according to grazing and grazing ban. During artificial rainfall, rainfall and penetrating rainfall are recorded every 1min. Finally, the grassland canopy interception is calculated by the difference between rainfall and penetrating rainfall.

2020-03-12

Evapotranspiration dataset of small lysimeter for sample plot in Tianlaochi watershed, Sidalong Forest Region, Qilian Mountain (June to September 2012)

This data comes from the Tianlaochi watershed sample plot. The vegetation types of the sample plot are grassland, shrub, Sabina przewalskii and Picea crassifolia. The self-made Lysimeter is mainly used to observe the soil evapotranspiration characteristics in Picea crassifolia forestry. To provide basic data for the development of watershed evapotranspiration model. At about 19:00 every day, an electronic scale with an accuracy of 1g is used to weigh the inner barrel. In case of rain, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage amount in the leakage barrel as well. The observation period in 2011 is from May 30 to September 10. The observation period in 2012 is from June 11 to September 10. Observation instrument: 1) standard 20cm diameter rain tube rain gauge. 2) self-made lysimeter (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy: 0.1g) used to observe the weight change of self-made lysimeter.

2020-03-12

Deuterium and Oxygen-18 of precipitation, river and soil water in Hulugou small watershed (June 2012 – June 2013)

1、 Data Description: from June 2012 to June 2013, the rainfall, river water and soil water in the basin were sampled and analyzed. 2、 Sampling location: rainfall sampling point is located in Qilian station of Chinese Academy of Sciences, with longitude and latitude of 99 ° 52 ′ 39.4 ″ e, 38 ° 15 ′ 47 ″ n; river water sampling point is located at the outlet of hulugou watershed, with longitude and latitude of 99 ° 52 ′ 47.7 ″ e, 38 ° 16 ′ 11 ″ n, with sampling frequency of once a week; soil water sampling point is located in the middle and lower part of hongnigou catchment, with sampling depth of 180cm underground and longitude and latitude of 99 ° 52 ′ 25.98 ″ E, 38 ° 15 ′ 36.11 ″ n, only one sample is taken. 3、 Test method: thermofisher TM flash 2000 and mat 253 gas stable isotope ratio mass spectrometer were used to measure the samples in 2012; l2130-i ultra-high precision liquid water and water vapor isotope analyzer was used to measure the samples in 2013.

2020-03-12

Evaporation and precipitation dataset in Hulugou outlet in Upstream of Heihe River (2013)

1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2013 to December 31, 2013. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e; Latitude: 38°16 'N; Height: 2981.0 m

2020-03-11