Current Browsing: soil moisture/water content


HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2017)

The data set contains observation data of cosmic-ray instrument (crs) from January 1, 2017 to December 31, 2017. The site is located in the farmland of Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is cornfield. The latitude and longitude of the observation site is 100.3722E, 38.8555N, the altitude is 1556 meters. The bottom of the instrument probe is 0.5 meter from the ground, and the sampling frequency is 1 hour. The original observation items of the cosmic-ray instrument include: voltage Batt (V), temperature T (°C), relative humidity RH (%), air pressure P (hPa), fast neutron number N1C (number / hour), thermal neutron number N2C (number / hour), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s). The data was released after being processed and calculated. The data includes: Date Time, P (pressure hPa), N1C (fast neutrons one/hour), N1C_cor (pressure-corrected fast neutrons one/hour) and VWC ( soil water content %), it was processed mainly by the following steps: 1) Data Screening There are four criteria for data screening: (1) Eliminating data with a voltage less than or equal to 11.8 volts ; (2) Eliminating data with a relative humidity greater than or equal to 80%; (3) Eliminating data with a sampling time interval not within 60 ± 1 minute; (4) Eliminating data with fast neutrons that vary by more than 200 in one hour. In addition, missing data is supplemented with -6999. 2) Air Pressure Correction The original data is corrected by air pressure according to the fast neutron pressure correction formula mentioned in the instrument manual, and the corrected fast neutron number N1C_cor is obtained. 3) Instrument Calibration In the process of calculating soil moisture, it is necessary to calibrate the N0 in the calculation formula. N0 is the number of fast neutrons under the situation with low antecedent soil moisture . Usually, soil samples in the source area are used to obtain measured soil moisture (or obtained by relatively dense soil moisture wireless sensors) θm (Zreda et al. 2012) and the fast neutron correction data N in corresponding time periods, then NO can be obtained by reversing the formula. Here, the instrument is calibrated according to the Soilnet soil moisture data in the source region of the instrument, and the relationship between the soil volumetric water content θv and the fast neutron is established. The data of June 26-27, and July 16-17, respectively, which have obvious differences in dry and wet conditions, were selected. The data from June 26 to 27 showed low soil moisture content, so the average of the three values of 4 cm, 10 cm and 20 cm was used as the calibration data, and the variation range was 22% to 30%; meanwhile , the data from July 16 to 17 showed high soil moisture content, so the average of the two values of 4cm and 10 cm was used as the calibration data, and the variation range was 28% - 39%, and the final average N0 was 3597. 4) Soil Moisture Calculation According to the formula, the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

2020-04-11

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2016)

The data set contains cosmic ray instrument (CRS) observations from January 1, 2016 to December 31, 2016.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selection of dry and wet conditions are the obvious difference of June 26, 2012-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

2020-04-11

HiWATER: Dataset of Hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2015)

The data set contains cosmic ray instrument (CRS) observations from January 1, 2015 to December 31, 2015.The station is located in dachman super station, dachman irrigation district, zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. Original observations of cosmic ray instruments include: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and SW (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. Here, according to Soilnet soil water data in the source area of the instrument, the instrument was calibrated to establish the relationship between soil volumetric water content v and fast neutrons.Selected dry wet condition are the obvious difference of June 26-27 and July 16-17, four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm the three values of average as calibration data, the change range of 22% to 30%, and July 16-17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%, final N0 an average of 3597. 4) soil moisture calculation According to the formula, the hourly soil water content data were calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

2020-04-11

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2014)

This data set contains cosmic ray instrument (CRS) observations from January 1, 2014 to December 31, 2014.The station is located in gansu province zhangye city da man irrigated area farmland, under the surface is corn field.The longitude and latitude of the observation point are 100.3722e, 38.8555n, and 1556m above sea level. The bottom of the instrument probe is 0.5m from the ground, and the sampling frequency is 1 hour. The original observations of the cosmic ray instrument (CRS1000B) included: voltage Batt (V), temperature T (c), relative humidity RH (%), pressure P (hPa), fast neutron number N1C (hr), thermal neutron number N2C (hr), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s).The data published are processed and calculated. The data headers include Date Time, P (pressure hPa), N1C (fast neutron number/hour), N1C_cor (fast neutron number/hour with revised pressure) and VWC (soil volume moisture content %). The main processing steps include: 1) data filtering There are four criteria for data screening :(1) data with voltage less than and equal to 11.8 volts are excluded;(2) remove the data of air relative humidity greater than and equal to 80%;(3) data whose sampling interval is not within 60±1 minute are excluded;(4) the number of fast neutrons removed changed by more than 200 in one hour compared with that before and after.In addition, the missing data was supplemented by -6999. 2) air pressure correction According to the fast neutron pressure correction formula mentioned in the instrument instruction manual, the original data were revised to obtain the revised fast neutron number N1C_cor. 3) instrument calibration In the process of calculating soil moisture, N0 in the calculation formula should be calibrated.N0 is the number of fast neutrons under the condition of soil drying. The measured soil moisture (or through relatively dense soil moisture wireless sensor) m (Zreda et al. (1) Where m is mass water content, N is the number of fast neutrons after revision, N0 is the number of fast neutrons under dry conditions, a1=0.079, a2=0.64, a3=0.37 and a4=0.91 are constant terms. Here, the instrument was calibrated according to Soilnet soil water data in the source area of the instrument, and the relationship between soil volumetric water content (v) and fast neutrons was established according to the actual situation. In formula (1), m was replaced by v.Selected dry wet condition are the obvious difference of June 26-27 June and July 16 - July 17 four days of data, including June 26-27 rate data showed that soil moisture is small, so the selection of 4 cm, 10 and 20 cm as the rate of the three values of average data, its range is 22% 30%, and July 16 - July 17 rate data showed that soil moisture is bigger, so select 4 cm and 10 cm as two value average rate data, the range of 28% - 39%,Finally, the average values of crs_a and crs_b, N0, were 3252 and 3597, respectively. 4) soil moisture calculation According to formula (1), the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

2020-04-11

Dataset of vegetation regulation mechanism of soil water cycle in arid desert area (2002-2005)

The vegetation regulation mechanism project of soil water cycle in arid desert areas belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by li xinrong, a researcher of the institute of environment and engineering in dry and cold areas, Chinese academy of sciences, with the running time of 2003.1-2005.12. Remittance data of the project: 1. Dataset of observation field of shapotou railway vegetation sand fixation protection system (excel) Plant and soil information in the vegetation-sand fixation zone established in 1956, 1964, 1981 and 1987.Since the establishment of the observation field, long-term soil moisture and vegetation surveys have been conducted. This database records the soil moisture data after the neutron tube installation in August 2002, the vegetation data from 2003 to 2005 (vegetation structure, herb structure, shrub structure, etc.), and the soil physical and chemical properties data (particle size, total N,P2O5,K2O, hydrolyzed N) of the irregular surveys. 2. Physiological data set of desert plant stress (excel) From 2003 to 2005, the physiological and biochemical characteristics of typical plant communities and their dominant species in steppe desert under natural and simulated environmental conditions were analyzed.(including photosynthetic transpiration, fluorescence, biochemistry and other indicators) 3. Soil infiltration and evapotranspiration data set (excel) Precipitation infiltration process, soil water dynamics and evapotranspiration of fixed sand dunes monitored by desert artificial vegetation using TDR and Lysimeters from 2002 to 2005. 4. Data set of comprehensive survey on soil and vegetation in the southeastern margin of tengger desert (excel) In 2003-2004, silver (sichuan), yan (latour) highway, silver (sichuan) (state) highway through the tengger desert area, set up along the road of eight samples, 449 samples of soil conductivity, Ph, organic matter, total nitrogen (content) and vegetation (plants, coverage, average height, biomass, strains, coverage, high average, biomass).

2020-04-04

The function and mechanism data of lignin sand fixation in Ningxia straw pulp papermaking wastewater (August 2005)

The research project on the function and mechanism of sand-fixing afforestation of waste lignin from straw pulp and paper making belongs to the national natural science foundation of China "environment and ecological science in western China" major research program, led by wang hanjie, a researcher of the institute of aviation meteorology and chemical protection, air force equipment research institute. The project ran from January 2004 to December 2006 Remittance data of the project: 1. 2005-08-10 - sand lake - jinsha wan test site image (JPG) 2.2006 field picture of fixed sand test (JPG) 3. Meteorological data of ningxia jinshawan meteorological station (TXT text) Observation data including dry bulb temperature, wet bulb temperature, 0, 5, 10, 15, 20cm ground temperature, evaporation and air temperature were observed at 8:00,14:00 and 20:00 on August 13, 2005 4. Growth data of jinshawan community in ningxia (TXT text) The data of crown diameter and height of four samples are included. 5. Soil water data of jinshawan, ningxia (excel) Soil moisture data of 16 samples at depths of 20CM and 12CM in clear water control area and lignin spraying area by 2 hours in the daytime on August 19, 2005. 6. Soil water data of shahu lake in ningxia (excel) On August 10,11, 2005, soil moisture data of various depths of 10CM,12CM and 20CM were obtained 7. Plant growth data of sand fixation community in shahu, ningxia (excel) Plant growth statistics of 5 sample plots: species name,x,y, base, crown, height, number of plants.

2020-03-31

Modeling ecohydrological processes and spatial patterns in the upstream of the Heihe river basin (1960-2014) V3.0

The output data of the distributed eco hydrological model (gbehm) in the upper reaches of Heihe River includes the spatial distribution data series of 1-km grid. Region: Heihe River (Yingluo gorge), Beida River (Binggou new land), temporal resolution: Monthly Scale, spatial resolution: 1km, period: 1960-2014. Data include precipitation, evapotranspiration, runoff depth, soil volume water content (0-100cm). All data are in ASCII format. Please refer to the basin.asc file in the reference directory for the spatial range of the basin. Projection parameters of model results: sphere_Arc_Info_Lambert_Azimuthal_Equal_Area

2020-03-27

Digital soil mapping dataset of hydrological parameters in the Heihe River Basin (2012)

According to the principle of soil landscape model, the key hydrological parameters spatial distribution map data products are made by digital soil mapping method. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers / Albers · conic · equal · area; Spatial resolution: 90m; Data format: TIFF; Data content: spatial distribution of saturated water content, field water capacity, wilting water content and saturated conductivity Prediction method: enhanced regression tree Environmental variables: main soil forming factors Dataset content: Pr_0kpsm.tif: saturated water content (unit:%) Pr_33kp SM. TIF: field capacity (unit:%) X1500kp sm.tif: wilting water content (unit:%) SHC sm.tif: saturated hydraulic conductivity (unit: KS / (mm · min-1))

2020-03-27

China soil map based harmonized world soil database (HWSD) (v1.1) (2009)

The data is based on the Harmonized World Soil Database version 1.1 (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). The data source of China is 1: 1 million soil data in the second national land survey provided by the Nanjing Soil Research Institute. The data can provide model input parameters for modelers, in agricultural perspective, it can be used to study eco-agricultural zoning, food security and climate change. The data format is grid and the projection is WGS84. The soil classification system used is mainly FAO-90. The main fields of the soil property table include: SU_SYM90 (the soil name in the FAO90 soil classification system); SU_SYM85 (FAO85 classification); T_TEXTURE (top soil texture); DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS (19.5); AWC_CLASS (soil effective water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification with obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of clay soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm). For the meaning of specific attribute values, please refer to the documentation * .pdf and database * .mdb in the folder.

2020-03-27

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on August 2, 2012

On August 2, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. No synchronous vegetation sampling was carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.

2020-03-15