Current Browsing: glaciers/ice sheets

Glacial Runoff Dataset of Five Upstreams in the Tibetan Plateau in 1971-2015

The coverage time of glacier runoff data set in the five major river source areas of the Qinghai Tibet Plateau is from 1971 to 2015, and the time resolution is year by year, covering the source areas of five major rivers (Yellow River source, Yangtze River source, Lancang River source, Nu River source, Yarlung Zangbo River source). The data is based on multi-source remote sensing and measured data. The glacier runoff data is simulated by using the daily scale meteorological data of five major river source areas and their surrounding meteorological stations, the global vegetation products of umd-1km, the igbp-dis soil database, the first and second glacier catalogue data, and the distributed hydrological model vic-cas coupled with the glacier module is used to simulate the glacier runoff data. The simulation results are verified by the site measured data to enhance the quality control. Data indicators include: Glacier runoff (rate of glacier runoff:%), total runoff (mm / a), snow runoff (rate of snow runoff:%), and rainfall runoff rate (rainfall runoff rate:%).


Surface meltwater dataset at 30-m resolutionform Alexander Island in the Antarctic Peninsula (2000-2019)

In recent years, the Antarctic Ice Sheet experiences substantial surface melt, and a large amount of meltwater formed on the ice surface. Observing the spatial distribution and temporal evolution of surface meltwater is a crucial task for understanding mass balance across the Antarctic Ice Sheet. This dataset provides a 30 m surface meltwater coverage, extracted from Landsat images, in the typical ablation zone of the ice sheet (Alexandria Island, Antarctic Peninsula) from 2000 to 2019. The projection of this dataset is South Polar Stereographic. The formats of the dataset are vector (.shp) and raster (.tif).


Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".


Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.


The second glacier inventory dataset of China (version 1.0) (2006-2011)

China's second glacier inventory uses the high-resolution Landsat TM/ETM+ remote sensing satellite data as the main glacier boundary data source and extracts the data source with the latest global digital elevation model, SRTM V4, as the glacier attribute, using the current international ratio threshold segmentation method to extract the glacier boundary in bare ice areas. The ice ridge extraction algorithm is developed to extract the glacier ice ridge, and it is used for the segmentation of a single glacier. At the same time, the international general algorithm is used to calculate the glacier attributes, so that the vector data and attribute data that contain the glacier information of the main glacier regions in west China are obtained. Compared with some field GPS field measurement data and higher resolution remote sensing images (such as from QuickBird and WorldView), the glacial vector data in the second glacier inventory data set of China have higher positioning accuracy and can meet the requirements for glacial data in national land, water conservancy, transportation, environment and other fields. Glacier inventory attributes: Glc_Name, Drng_Code, FCGI_ID, GLIMS_ID, Mtn_Name, Pref_Name, Glc_Long, Glc_Lati, Glc_Area, Abs_Accu, Rel_Accu, Deb_Area, Deb_A_Accu, Deb_R_Accu, Glc_Vol_A, Glc_Vol_B, Max_Elev, Min_Elev, Mean_Elev, MA_Elev, Mean_Slp, Mean_Asp, Prm_Image, Aux_Image, Rep_Date, Elev_Src, Elev_Date, Compiler, Verifier. For a detailed data description, please refer to the second glacier inventory data description.


Glacier distribution map over Heihe River Basin based on the first glacier inventory

Glaciers are sensitive to climate change and are important indicators and amplifiers of global change. In inland river regions, river runoff mainly comes from mountain ice and snow melt. Glaciers are very important "solid reservoirs" in these regions, and glacial melt water is an important source of supply for the tributaries of the Heihe River. The inventory of glaciers in the Heihe River Basin was completed from 1979 to 1980. For related information, please refer to "Chinese Glacier Inventory-Qilian Mountains" edited by Wang Zongtai and others. In 2004, the relevant results of the "China Glacier Inventory" were systematically digitized and a database was established. The final results were released through the "China Glacier Information System". However, in the process of coordinate restoration, the accuracy of the reference data was poor, and the glaciers in the Heihe River Basin had obvious position shifts. Therefore, we used the Landsat remote sensing image corrected by ortho-geometric correction. The processed Heihe Glacier distribution data is highly consistent with the existing basic geographic information in China in terms of geometric accuracy, and consistent with the first glacier inventory in terms of attributes.


Glacier distribution map in the Sanjiangyuan based on the second glacier inventory (2008)

This data set is extracted from the second Glacier Inventory Data Set of China for Three River Source area. The file is SHP format. The attribute data are as follows: Glc_Name (glacier name), Drng_Code (basin code), FCGI_ID (first glacier catalogue code), GLIMS_ID (GLIMS glacier code), Mtn_Name (mountain system name), Pref_Name (administrative division), Glc_Long (glacier longitude), Glc_Lati (glacier latitude), Glc_Area (glacier area), Abs_Accu (absolute area accuracy), Rel_Accu (relative area accuracy), Deb_Area (surface Moraine Area), Deb_A_Accu (absolute accuracy of surface moraine Area), Deb_R_Accu (relative accuracy of surface moraine area)、Glc_Vol_A (estimation of glacier volume 1)、Glc_Vol_B (estimation of glacier volume 2)、Max_Elev (maximum glacier elevation)、Min_Elev (minimum glacier elevation)、Mean_Elev (average glacier elevation)、MA_Elev (median area height of glacier)、Mean_Slp (average glacier slope)、Mean_Asp (average glacier slope direction)、Prm_Image (major remote sensing data)、Aux_Image (auxiliary remote sensing data)、Rep_Date (glacier catalogue represents date)、Elev_Src (elevation data source)、Elev_Date (elevation represents date)、Compiler (glacier cataloguing editor)、Verifier (glacier cataloguing verifier).


Reconstruction data set of mass balance of seven glaciers in Qinghai Tibet Plateau (1975-2013)

The data set includes the mass balances of Hailuogou Glacier, Parlung No.94 Glacier, Qiyi glacier, Xiaodongkemadi Glacier, Muztagh No.15 Glacier, Meikuang Glacier and NM551 Glacier in the Qinghai Tibet Plateau from 1975 to 2013. Based on several mass balance observations collected from World Glacier Inventory ( and The Third Pole Environment Database (, doi:10.11888/GlaciologyGeocryology.tpe.96.db) by Tandong Yao and the meteorological data obtained from Global Land Assimilation System (GLDAS), the mass balances of the above seven glaciers from 1975 to 2013 are reconstructed by using the glacier material balance calculation formula. This reconstruction data is based on the published glacier material balance data to calibrate the parameters in the glacier material balance formula, and to reconstruct the long-time series material balance by using the glacier material balance formula, in which the parameter calibration results and the reconstruction results of the long-time series data are compared with the relevant research results, demonstrating the rationality of the data results Please refer to the following papers. The data can be used to study the change of water resources in the glacial region, expand the data set of Glacier Mass Balance in the Qinghai Tibet Plateau, and provide reference for the future research of Glacier Mass Balance reconstruction.


Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".


An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018

Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at (Muhammad and Thapa, 2019).