Current Browsing: Daman Superstation


HiWATER: Dataset of vegetation type and plant structure investigation in the middle of Heihe River Basin form Jun to Aug, 2012

The dataset contains vegetation type and plant structure in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI and SASI the middle reaches of the Heihe River Basin between 25 June and 6 August in 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Vegetation range in the middle reaches of the Heihe River Basin and survey route could be decided with the help of Google Earth. Wuxing village in Xiaoman town was selected to survey detailed and other places were investigated as far to reach as possible. Main methods were to write down the longitude and latitude, phenology of the plant structure, take photos for the vegetation. Dataset contains: longitude and latitude, vegetation type, area and phenology. Observation Place: CASI flight area in artificial oasis in the middle reaches, CASI stripe flight area in the middle reaches and Zhangye district. Date: From 25 June and 6 August in 2012.

2019-09-14

HiWATER: Dataset of ground truth measurements synchronizing with TerraSAR-X satellite overpassing in the Daman Superstation on June 4, 2012

The first dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 4 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The second dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 15 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The third dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 26 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The measurements were conducted at a sampling plot southeast to the Daman Superstation with an area of around 100 m × 100 m, which was dominantly planted with maize. Steven Hydro probes were used to collect soil moisture and other measurements with an interval of 5 m. For each sampling point, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within this sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, LAI, vegetation water content, canopy height, row distance and leaf chlorophyll content. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-13

HiWATER: Dataset of scintec flat array sodar in the villiage of Wuxing, Xiaoman Town

This mesurement aims to obtain the wind direction, wind speed, and disturbance characteristics of the lower atmosphere. The observation period is from 25 June to 17 Septemper, 2012 (UTC+8). Measurement instruments: Germany Scintec MFAS Flat Array Sodar Measurement position: 60 meters northwest of Daman Super Station Measurement period: 25 June to 17 Septemper, 2012. 24 hours of uninterrupted obeservation. Automatically Recorded Data every half hour. Data contents: We obtain one data file every day. The data contents include observation height, wind speed, wind direction, wind speed in east – west direction, wind speed in south – north direction, vertical wind speed, standard deviation of vertical wind speed, backscatter intensity. Remarks: The prectical obsevation height changes with the air water vapor content. Our obsevation point is located in the arid region. The air water vapor content is very low. Therefore the maximum obsevation height is about 300 meters. When it rains or very windy and dusty, the backscatter intensity is very high. Then the data would be miss or only has the vertical wind speed and backscatter intensity.

2019-09-13

HiWATER: CCD reference image in core experimental area of flux observation matrix in the midstream of the Heihe River Basin

This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system

2019-09-12

HiWATER: Dataset of thermal infrared spectrum observed by BOMEM MR304 in the middle reaches of the Heihe River Basin

This dataset includes the emissivity spectrum (8-14 µm) of typical ground objects in Zhangye City, Zhangye airport, desert and farmland at Wuxing experiment area. The data was measured by the BOMEM MR304 FTIR (Fourier Transform Infrared Spectrometer). A. Objective The objective of the thermal infrared (TIR) spectrum measurement lies in: Radiometric calibration for the airborne TIR sensor, land surface emissivity products validation and collecting typical surface spectrum working as priori knowledge in land surface temperature inversion and ecological and hydrological models. B. Instruments and theory Instruments: BOMEM MR304 FTIR, Mikron M340 blackbody, BODACH BDB blackbody, diffused golden plate, Fluke 50-series II thermometer Measurement theory: The target radiance is directly measured by the MR304 FTIR under clear-sky condition while the atmospheric downward radiance is obtained through a diffused golden plate, and emissivity is retrieved by the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm C. Experiment site and targets 29-5-2012: Stone bricks, grassland and asphalt, etc at square of Zhangye. 20-6-2012: Roof of the building in Zhangye, water and sand sample collected from the desert, etc. 30-6-2012: Cement road at Zhangye airport, desert around the Zhangye airport. 3-7-2012: Corn leaves, soil and road in the farmland at Wuxing village, Zhangye City. 4-7-2012: Corn leaves, wheat canopy at Xiaoman town, Zhangye City. 10-7-2012: Bricks of Runquanhu park, Zhangye City. 13-7-2012: Corn leaves and other plants at Wuxing village, Zhangye City. D. Data processing The original data collected by BOMEM FTIR is firstly calibrated using the calibration data and get the radiance spectrum of the targets and sky (*.rad), then, the radiance data is converted to the easy readably text file (ASCII format). The time used in this dataset is in UTC+8 Time.

2019-09-12

HiWATER: Dataset of sun photometer observations in the middle and upper reaches of the Heihe River Basin (2012)

The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.

2019-09-12

HiWATER: Dataset of crop leaf stomatal conductance observed in the middle reaches of the Heihe River Basin

The data set include crop leaf stomatal conductance observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf stomatal conductance, a key biophysical parameter, was observed as model parameter or a priori knowledge for crop growth model, or evapotranspiration estimation. 2) Measuring instruments Leaf porometer. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The crop leaf stomatal conductance for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the Super Station The crop leaf stomatal conductance at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. c. the Shiqiao sample site The crop leaf stomatal conductance at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.

2019-09-12

HiWATER: Dataset of photosynthesis observed by LI-6400 in the middle reaches of the Heihe River Basin

The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the artificial oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included two main crops in the middle reaches of Heihe river: wheat and maize, which located in the town of Pingchuan in Linze and the Super Station of Wuxing, respectively. Observation periods lasted from mid-May to September. This dataset included the raw observation data and the pretreatment data of wheat and maize observed by LI-6400 during the observation periods. Objectives of observation: The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. Instrument and theory of the observation: (1) Measuring instrument: LI-6400XT Portable Photosynthesis System; (2) Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. Time and site of observation: (1) Observation site of the wheat: in the town of Pingchuan in Linze; Observation time: 2012-05-17,2012-06-08 to 2012-6-13; (2) Observation site of the maize: in the Super Station of Wuxing; Observation time: from 2012-05-19 to 2012-08-15. The time used in this dataset is in UTC+8 Time. Data processing: The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type + time”, every leaf was recorded 3 times, and then added a remark.

2019-09-12

HiWATER: Dataset of soil respiration observed in the middle reaches of the Heihe River Basin

Soil respiration rate was measured at the super station of Daman irrigation district in Zhangye city using the open circuit soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA) 1) Objective: The aim of soil respiration rate measurement is to explore the diurnal variation characteristics of soil respiration rate and to provide a scientific basis for the assessment of farmland ecosystem carbon cycle and carbon balance. 2) Measurement instruments and ways Measurement instruments: the open type of cold dry soil carbon flux measurement system LI-8100 (LI-COR, Lincoln, NE, USA). Measurement means: soil respiration chamber was placed in PVC ring (10 cm of diameter, 5 cm of height), which was inserted into the soil about 1 to 2 cm 1 d before measurement. The observation is automatic with a power supply of solar panels. 3) Measurement time Soil respiration rate was continuously measured mainly in the corn growing season. The time used in this dataset is in UTC+8 Time. 4) Data processing The data was periodically collected from the data collection instrument and saved as *.81x file, then was converted to text format file using LI-8100 (M) PC Client v2.0.0 software.

2019-09-12

HiWATER: Dataset of crop biomass observed in the middle reaches of the Heihe River Basin

The data set include crop biomass observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the EC plots, the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop biomass, a key biophysical parameter, was observed for calibration and validation of crop growth model and the retrieval of other biophysical parameters as well as the application in eco-hydrological models. 2) Measurement instrument: Electronic balance (±0.1g) and oven. 3) Measurement site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The wheat biomass for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the EC site Maize biomass at 14 EC site (EC-2,EC-3,EC-5,EC-6,EC-7,EC-8,EC-9, EC-10, EC-11, EC-12, EC-13, EC-14, EC-15, EC-16) are measured on 14, 21, 25 and 31 May, 7, 13, 23 and 28 June, 3, 13, 18 and 23 July, 3, 12 and 28 August. c. the super station Maize biomass at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. d. the Shiqiao sample site Maize biomass at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets.

2019-05-23