Current Browsing: Solar Spectrophotometer


Aerosol optical property dataset of the Tibetan Plateau by ground-based observation (2009-2016)

The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.

2020-08-17

WATER: Dateset of sun photometer observations in the Biandukou foci experimental area on Mar, 2008

The dateset of sun photometer observations was obtained in the Biandukou foci experimental area from Mar. 7 to 17, 2008, simultaneous with MODIS and TM. Those provide reliable data for atmosphere correction of the same period in this area. Atmospheric parameters were measured by CE318. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired. Column water vapor can also be retrieved according to data in 936 nm. The dataset archived in txt files includes processed data on Mar. 7, 14 and 17 respectively.

2019-09-15

WATER: Dataset of sun photometer observations in the Linze grassland foci experimental area (2008)

The dataset of sun photometer observations was obtained in Linze grassland station, the reed plot A, the saline plot B, the barley plot E, the observation stationof the Linze grassland foci experimental areaand Jingdu hotel of Zhangye city. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318 from May 30 to Jun. 11, 2008. And from Jun. 15 to Jul.11, the data of 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were acquired. Both measurements were carried out at intervals of 1 minute. Optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, air temperature and pressure near land surface, the solar azimuth and zenith could all be further retrieved. Readme file was attached for detail.

2019-09-15

WATER: Dataset of ground truth measurements synchronizing with Landsat TM in the Linze grassland and Linze station foci experimental area during the pre-observation period (on Sep. 23, 2007)

The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.

2019-09-12

WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on June 1, 2008

The dataset of ground truth measurement synchronizing with the airborne WiDAS mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 1, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included: (1) The radiative temperature of maize, wheat and the bare land in Yingke oasis maize field and Huazhaizi desert No. 1 plot by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (2) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 1.0; from Institute of Remote Sensing Applications), observing straight downwards at intervals of 1s in Yingke oasis maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (3) FPAR (Fraction of Photosynthetically Active Radiation) of maize and wheat by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in Excel format. (4) The reflectance spectra by ASD in Yingke oasis maize field (350-2500nm , from BNU, the vertical canopy observation and the transect observation), and Huazhaizi desert No. 1 plot (350-2500nm , from Cold and Arid Regions Environmental and Engineering Research Institute, CAS, the NE-SW diagonal observation at intervals of 30m). The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (5) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (6) The radiative temperature by the handheld radiometer in Yingke oasis maize field (from BNU, the vertical canopy observation, the transect observation and the diagonal observation), Yingke oasis wheat field (only for the transect temperature), and Huazhaizi desert No. 1 plot (the NE-SW diagonal observation). Besides, the maize radiative temperature and the physical temperature were also measured both by the handheld radiometer and the probe thermometer in the maize plot of 30m near the resort. The data included raw data (in .doc format), recorded data and the blackbody calibrated data (in Excel format). (7) Atmospheric parameters on the playroom roof at the resort by CE318 (produced by CIMEL in France). The underlying surface was mainly composed of crops and the forest (1526m high). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Narrow channel emissivity of the bare land and vegetation by the W-shaped determinator in Huazhaizi desert No. 1 plot. Four circumstances should be considered for emissivity, with the lid plus the au-plating board, the au-plating board only, the lid only and without both. Data were archived in Word.

2019-09-12

WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Landsat TM in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 7, 2008

The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jul. 7, 2008. Observation items included: (1) the radiative temperature by the thermal camera (Institute of Remote Sensing Applications) of maize, wheat and the bare land of Yingke oasis maize field at a height of 1.2m above the ground. Optical photos of the scene were also taken. Raw data (read by ThermaCAM Researcher 2001) was archived in IMG format, and blackbody calibrated data and processed data were all archived as Excel files. (2) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (3) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-1603nm) from Institute of Remote Sensing Applications (CAS). The grey board and the black and white cloth were also used for calibration on the CCD camera. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (4) the component temperature by the handheld radiometer in Yingke oasis maize field and Huazhaizi desert maize field. For maize, the component temperature included the vertical canopy temperature, the bare land temperature and the plastic film temperature; for the wheat, it included the vertical canopy temperature, the half height temperature, the lower part temperature and the bare land temperature. The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (5) the radiative temperature by the handheld radiometer (emissivity = 1.0) in Yingke oasis maize field (for the canopy mean temperature), Huazhaizi desert maize field (for the transect temperature), Zhangye airport (the black and white cloth for calibration) and Huazhaizi desert No. 2 plot (the diagonal radiative temperature and the radiative temperature of 30m*30m subplot). The component temperature was also measured. The data included raw data (in Word format), recorded data and the blackbody calibrated data (as Excel files). (6) The air temperature (°C) , the soy bean leaf temperature (°C) and the maize leaf temperature (°C) by SPAD (from Institute of Remote Sensing Applications (CAS)) in Yingke oasis maize field. Besides, spectrum, photosynthesis, fluorescence and chlorophyll were measured as well. (7) The leaf reflectance spectra ASD (serial number: 64831) and 50% grey board from Institute of Remote Sensing Applications (CAS). The spectral DN was changed into radiance based on the 50% grey board calibration data and calibration lamp data, which could further be transformed into Excel format. Moreover, the solar radiance=the reference board radiance/the reference reflectance. (8) The leaf fluorescence by ImagingPam from Beijing Academy of Agriculture and Forestry Sciences. YII = (Fm'-F)/Fm' was applied for caculation, F indicating fluorescence before saturating flash light, Fm' the maximum fluorescence before saturating flash light, and YII the quantum yield of photosystem II. Data were archived in pim and could be read by ImagingPam, which can be downloaded from http://www.zealquest.com. (9) The leaf photosynthesis by LI-6400. (10) The radiative temperature by the automatic thermometer (FOV: 10°; emissivity: 0.95), observing straight downwards at intervals of 1s in Yingke oasis maize field and Huazhaizi desert maize field. Raw data, blackbody calibrated data and processed data were all archived in Excel format. (11) FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (12) Atmospheric parameters near Daman Water Management office by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, Rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.

2019-09-12

WATER: Dataset of ground truth measurements synchronizing with EO-1 Hyperion in the Yingke oasis foci experimental area during the pre-observation period ( Sep. 5 - Sep. 10, 2007 )

The dataset of ground truth measurements synchronizing with EO-1 Hyperion was obtained in the Yingke oasis foci experimental area from Sep. 5 to Sep. 10, 2007 during the pre-observation period. It was carried out by the 3rd and 2nd sub-projects of CAS’s West Action Plan along Zhangye city-Yingke oasis-Huazhaizi, and on the very day of 10, one scene of Hyperion was captured. sampling plot time north latitude east longitude elevation notes 1 9:58 38°53′53.2″ 100°26′09.7″ 1500 cauliflower land east to the road 2 10:51 38°52′39.8″ 100°25′33.1″ 1510 cabbage land east to the road 3 11:35 38°52′39.0″ 100°25′34.6″ 1510 east to No. 2 sampling plot, maize and intercropping wheat reaped 4 12:24 38°51′53.0″ 100°25′08.0″ 1510 maize seed 5 13:08 38°51′54.2″ 100°25′09.5″ 1520 north to No. 4 sampling plot, maize and intercropping wheat reaped 6 14:40 38°51′23.5″ 100°24′45.0″ 1510 west to the road, maize seed, serious blights (red spider) 7 15:40 38°49′26.6″ 100°23′23.7″ 1540 intercrop land of sea buckthorn and beet 8 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land, rich of amaranth weeds 9 16:18 38°49′06.4″ 100°23′30.8″ 1540 beet land 10 16:18 38°49′06.9″ 100°23′30.5″ 1540 tomato land with less weeds 11 10:30 38°48′28.3″ 100°24′11.4″ 1540 sea buckthorn seedling land west to the road 12 11:24 38°48′09.3″ 100°24′10.1″ 1550 sun flower land east to the road, intercropping wheat reaped 13 12:38 38°46′16.3″ 100°23′14.2″ 1600 dry rice land 14 12:45 38°46′16.2″ 100°23′14.0″ 1600 rape land 15 12:54 38°46′15.6″ 100°23′13.8″ 1600 buckwheat land 16 14:52 38°45′55.5″ 100°23′00.1″ 1610 maize (without intercrop) 17 15:28 38°45′57.5″ 100°22′28.3″ 1630 maize (without intercrop) 18 16:20 38°43′17.3″ 100°22′53.4″ 1730 gobi (Bassia dasyphylla and margarite dominate) 19 17:40 38°42′31.8″ 100°22′56.8″ 1780 gobi (Bassia dasyphylla and Sympegma regelii dominate) 20 10:27 38°36′25.1″ 100°20′33.2″ 2260 wheatgrass dominates 21 11:10 38°36′24.4″ 100°20′38.1″ 2260 abandoned composite land 22 11:30 2260 near site 22, wheatgrass and composite cenosis 23 bare land 24 13:09 38°38′46.3″ 100°23′08.5″ 2030 alfalfa land 25 14:39 38°44′30.8″ 100°22′41.0″ 1660 poplar 26 9:47 38°58′11.4″ 100°26′18.3″ 1460 rice land Observation items included: (1) quadrat surveys (2) LAI by LAI-2000 (3) ground object reflectance spectra by ASD FieldSpec Pro (350-2500nm)from Gansu Meteorological Administration (4) the land surface temperature and the canopy radiative temperature by the hand-held thermal infrared sensor (5) the photosynthesis rate by LI-6400 (6) the radiative temperature by ThermaCAM SC2000 (7) Atmospheric parameters by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S codes (8) chlorophyll consistency by portable SPAD Those provide reliable ground data for developing and validating retrieval meathods of biophysical parameters from EO-1 Hyperion images.

2019-09-12

HiWATER: Dataset of sun photometer observations in the middle and upper reaches of the Heihe River Basin (2012)

The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.

2019-09-12

WATER: Dataset of ground truth measurement synchronizing with Landsat TM in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 20, 2008

The dataset of ground truth measurement synchronizing with Landsat TM was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on May 20, 2008. Observation items included: (1) LAI in Yingke oasis maize field. The maximum leaf length and width of each alfalfa and barley were measured. Data were archived in Excel format. (2) Reflectance spectra in Yingke oasis maize field by ASD FieldSpec (350-2500nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS), and in Huazhaizi desert No. 2 plot by ASD FieldSpec (350-1603nm, the vertical observation and the transect observation for reaumuria soongorica and the bare land) from Beijing Academy of Agriculture and Forestry Sciences. The grey board and the black and white cloth were also used for calibration spectrum. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (3) the radiative temperature by 3 handheld radiometers in Yingke oasis maize field (Institute of Remote Sensing Applications, BNU and Institute of Geographic Sciences and Natural Resources respectively, the vertical canopy observation and the transect observation), and by 3 handheld infrared thermometers in Huazhaizi desert No. 2 plot (the vertical vegetation and bare land observation). The data included raw data (in Word format), recorded data and the blackbody calibrated data (in Excel format). (4) the radiative temperature of maize, wheat and the bare land of Yingke oasis maize field by ThermaCAM SC2000 (1.2m above the ground, FOV = 24°×18°). The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (5) Photosynthesis of maize, wheat and the bare land of Yingke oasis maize field by LI6400, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (6) Maize albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (7) Atmospheric parameters in Huazhaizi desert No. 2 plot by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (8) Coverage fraction of Reaumuria soongorica by the self-made coverage instrument and the camera (2.5m-3.5m above the ground) in Huazhaizi desert No. 2 plot. Based on the length of the measuring tape and the bamboo pole, the size of the photo can be decided. GPS data was used for the location and the technology LAB was used to retieve the coverage fractionof the green vegetation. Besides, such related information as the surrounding environment was also recorded. Data included the vegetation iamge and coverage (by .exe). (9) The radiative temperature of Reaumuria soongorica canopy and the bare land by 2 fixed automatic thermometers (FOV: 10°; emissivity: 0.95) in Huazhaizi desert No. 2 plot, observing straight downwards at intervals of 1s. Raw data, blackbody calibrated data and processed data were all archived in Excel format.

2019-05-23

WATER: Dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 4, 2008

The dataset of ground truth measurement synchronizing with the airborne imaging spectrometer (OMIS-II) mission was obtained in the Yingke oasis and Huazhaizi desert steppe foci experimental areas on Jun. 4, 2008. Observation items included: (1) ground object reflectance spectra of maize and wheat in Yingke oasis maize field by ASD FieldSpec (350~2500 nm, the vertical canopy observation and the transect observation) from Institute of Remote Sensing Applications (CAS); and of the black and white cloth, the water body, vegetation and the cement floor in the resort calibration site by ASD (350-2500nm, fixed points observation) from BNU. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format. (2) The radiative temperature in Yingke oasis maize field (the transect observation), Yingke oasis wheat field (the transect observation), the maize field (intensive) near the resort (the transect observation) and Huazhaizi desert No. 1 plot (the diagonal and the fixed point observation) by the handheld infrared thermometer (emissivity: 1.00). As for the fixed point observation, 25 corner points were chosen in the plot of 30m×30m, and at each point, the bare land was measured twice and the vegetation once. Raw data (in Word format), blackbody calibrated data and processed data (in Excel format) were all archived. (3) Atmospheric parameters on the ICBC resort office roof by CE318 (produced by CIMEL in France) from Institute of Remote Sensing Applications. The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were all acquired by CE318. Those data include the raw data in .k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) Photosynthesis of wheat and maize by LI6400 in Yingke oasis maize field, carried out according to WATER specifications. Raw data were archived in the user-defined format (by notepat.exe) and processed data were in Excel format. (5) the radiative temperature vegetation (Reaumuria soongorica) and the bare land in Huazhaizi desert No. 1 plot by ThermaCAM SC2000 ( (1.2m above the ground, FOV = 24°×18°),. The data included raw data (read by ThermaCAM Researcher 2001), recorded data and the blackbody calibrated data (archived in Excel format). (6) the radiative temperature by the automatic thermometer at nadir in Yingke oasis maize field (2 from BNU, FOV: 10°; emissivity: 0.95, at intervals of 1s, set above the maize canopy and the bare land between ridges and the third from Institute of Remote Sensing Applications, emissivity: 1.0, at intervals of 0.05s, set above the maize canopy), Yingke wheat field (one set above the wheat canopy), Huazhaizi desert No. 1 plot (one set above the barley canopy), and in the resort calibration site (one for the cement floor). Raw data, blackbody calibrated data and processed data were all archived in Excel format. (7) Wheat albedo by the shortwave radiometer in Yingke oasis maize field. R =10H (R for FOV radius; H for the probe height). Data were archived in Excel format. (8) Wheat FPAR (Fraction of Photosynthetically Active Radiation) by SUNSACN and the digital camera in Yingke oasis maize field. FPAR= (canopyPAR-surface transmissionPAR-canopy reflection PAR+surface reflectionPAR) /canopy PAR; APAR=FPAR* canopy PAR. Data were archived in the table format of Word. (9) LAI in Yingke oasis maize field. The maximum leaf length and width of each maize and wheat were measured. Data were from Jun. 6, 2008, archived in Excel format.

2019-05-23