Current Browsing: Soil Science

Data set of soil moisture in the lower reaches of Heihe River (2012)

Soil particle size data: clay, silt and sand data of different sizes in sample plots (alpine meadow and grassland); soil moisture: soil moisture content.


Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".


Soil observation and leaf area index and aboveground biomass of maize sampling points in Yingke Daman area of Heihe River Basin (2012)

The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.


Modeling ecohydrological processes and spatial patterns in the Upstream of Heihe River Basin (2000-2012) V2.0

The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.


Soil observation data of typical sample points in Heihe River Basin (2012-2014)

The data set contains soil observation data of typical sample points in Heihe River Basin: pH value and soil texture 1. Soil pH value: longitude, latitude and pH value of typical soil sample points. 2. Soil texture: including soil texture data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The typical soil sampling method in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the representative sample points should be collected as far as possible. According to the Chinese soil taxonomy, soil samples from each profile were taken based on the diagnostic layers and diagnostic characteristics.


Soil type data set of typical soil sample points in Heihe River Basin (2013-2014)

The data set contains the location information and soil systematic type data of typical soil samples from the Heihe River Basin from July 2012 to August 2014. The typical soil sample collection method in the Heihe River Basin is representative sampling, which refers to the typical soil types that can be collected in the landscape area, and collects highly representative samples as much as possible. According to the Chinese soil systematic classification, the soil type of each section is divided based on the diagnostic layer and diagnostic characteristics. The sample points are divided into 8 soil orders: organic soil, anthropogenic soil, Aridisol, halomorphic soil, Gleysol, isohumicsoill , Cambisol, Entisol, and 39 sub-categories.


China meteorological assimilation datasets for the SWAT model - soil temperature version 1.0 (2009-2013)

CMADS (The China Meteorological Assimilation Driving Datasets for The SWAT model) The soil temperature component (hereinafter referred to as cmads-st) USES The China Meteorological Administration Land Data Assimilation System [CLDAS] to force The common Land surface model3.5 [CLM3.5]) (Community Land model, numerical simulation of Land surface, circulation 10 spin - up simulation, get basic stability model initial field, and obtain high space-time resolution of soil temperature data sets, eventually hierarchical data model is utilized to extract, quality control, a nested loop, re-sampling, and a variety of technologies such as bilinear interpolation method is finally established. Cmads-st series data set space covers the whole east Asia (0 ° n-65 ° N, 60 ° e-160 ° E), the spatial resolution is respectively cmads-st V1.0 version: 1/3 °, cmads-st V1.1 version: 1/4 °, cmads-st V1.2 version: 1/8 ° and cmads-st V1.3 version:The above resolutions are daily (the basic resolution of the soil temperature component output in CLM3.5 mode is 1/16°, which ensures the highest resolution of the cmads-st data set is 1/16°). The time scale is 2009-2013.The data set published on this page is the cmads-st V1.0 data set (spatial resolution :1/3°).Temporal resolution: daily.Space coverage: east Asia (0 ° n-65 ° N, 60 ° e-160 ° E).Number of stations: 58,500.Supply factors: the average daily soil temperature of 10 layers (the depth of node hierarchy is in order: the first layer :0.00710063521m; the second layer :0.0279249996m; the third layer :0.0622585751m; the fourth layer :0.118865065m; the fifth layer :0.2121934m; the sixth layer :0.3660658m; the seventh layer :0.619758487m; the eighth layer :1.03802705m; the ninth layer :1.72763526m;Floor 10 :2.8646071m).Provide data format: TXT. The path of the cmads-st V1.0 soil temperature data set is: CMADS - ST - V1.0\2009 \ layer1 V1.0\2009 \ layer10 to CMADS - ST CMADS - ST - V1.0\2010 \ layer1 V1.0\2010 \ layer10 to CMADS - ST CMADS - ST - V1.0\2011 \ layer1 V1.0\2011 \ layer10 to CMADS - ST CMADS - ST - V1.0\2012 \ layer1 V1.0\2012 \ layer10 to CMADS - ST CMADS - ST - V1.0\2013 \ layer1 V1.0\2013 \ layer10 to CMADS - ST Cmads-st V1.0 subset file path and file name description Where, daily soil temperature (ten layers) is shown in layer1-layer10\.Are located in the following directories (take 2009 as an example): \2009\layer1\ 2009 layer1 (0.00710063521m) soil temperature directory \2009\layer2\ 2009 layer2 (0.0279249996m) soil temperature directory \2009\layer3\ 2009 layer3 (0.0622585751m) soil temperature catalogue \2009\layer4\ 2009 layer4 (0.118865065m) soil temperature catalogue \2009\layer5\ 2009 layer5 (0.2121934m) soil temperature catalogue \2009\layer6\ 2009 layer6 (0.3660658m) soil temperature catalogue \2009\layer7\ 2009 layer7 (0.619758487m) soil temperature directory \2009\layer8\ 2009 layer8 (1.03802705m) soil temperature catalogue \2009\layer9\ 2009 layer9 (1.72763526m) soil temperature catalogue \2009\layer10\ 2009 10th layer (2.8646071m) soil temperature catalogue


Field soil survey and analysis data in the upper reaches of Heihe River Basin (2013-2014)

The dataset is the field soil measurement and analysis data of the upstream of Heihe River Basin from 2013 to 2014, including soil particle analysis, water characteristic curve, saturated water conductivity, soil porosity, infiltration analysis, and soil bulk density I. Soil particle analysis 1. The soil particle size data were measured in the particle size laboratory of the Key Laboratory of the Ministry of Education, West Ministry of Lanzhou University.The measuring instrument is Marvin laser particle size meter MS2000. 2. Particle size data were measured by laser particle size analyzer.As a result, sample points with large particles cannot be measured, such as D23 and D25 cannot be measured without data.Plus partial sample missing. Ii. Soil moisture characteristic curve 1. Centrifuge method: The unaltered soil of the ring-cutter collected in the field was put into the centrifuge, and the rotor weight of each time was measured with the rotation speed of 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200 and 11600 respectively. 2. The ring cutter is numbered from 1 to the back according to the number. Since three groups are sampled at different places at the same time, in order to avoid repeated numbering, the first group is numbered from 1, the second group is numbered from 500, and the third group is numbered from 1000.It's consistent with the number of the sampling point.You can find the corresponding number in the two Excel. 3. The soil bulk density data in 2013 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 4. Weight after drying: The drying weight of some samples was not measured due to problems with the oven during the experiment. 3. Saturated water conductivity of soil 1. Description of measurement method: The measurement method is based on the self-made instrument of Yiyanli (2009) for fixing water hair.The mariot bottle was used to keep the constant water head during the experiment.At the same time, the measured Ks was finally converted to the Ks value at 10℃ for analysis and calculation.Detailed measurement record table refer to saturation conductivity measurement description.K10℃ is the data of saturated water conductivity after conversion to 10℃.Unit: cm/min. 2. Data loss explanation: The data of saturated water conductivity is partly due to the lack of soil samples and the insufficient depth of the soil layer to obtain the data of the 4th or 5th layer 3. Sampling time: July 2014 4. Soil porosity 1. Use bulk density method to deduce: according to the relationship between soil bulk density and soil porosity. 2. The data in 2014 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 5. Soil infiltration analysis 1. The infiltration data were measured by the "MINI DISK PORTABLE specific vector INFILTROMETER".The approximate saturation water conductivity under a certain negative pressure is obtained.The instrument is detailed in website: 2.D7 infiltration tests were not measured at that time because of rain. Vi. Soil bulk density 1. The bulk density of soil in 2014 refers to the undisturbed soil taken by ring cutter based on the basis of 2012. 2. The soil bulk density is dry soil bulk density, which is measured by drying method.The undisturbed ring-knife soil samples collected in the field were kept in an oven at 105℃ for 24 hours, and the dry weight of the soil was divided by the soil volume (100 cubic centimeters). 3. Unit: G /cm3


Data set of plant physiological indexes and soil water, salt and nutrient in the lower reaches of Tarim River (2000-2006)

In the ecosystem, soil and vegetation are two interdependent factors. Plants affect soil and soil restricts vegetation. On the one hand, there are a lot of nutrients such as carbon, nitrogen and phosphorus in the soil. On the other hand, the availability of soil nutrients plays a key role in the growth and development of plants, directly affecting the composition and physiological activity of plant communities, and determining the structure, function and productivity level of ecosystems. Soil moisture content (or soil moisture content): In the 9 sections from Daxihaizi to taitema lake in the lower reaches of Tarim River, plant sample plots are set in the direction perpendicular to the river channel according to the arrangement of groundwater level monitoring wells. Dig one soil profile in each sample plot, collect one soil sample from 0-5 cm, 5-15 cm, 15-30 cm, 30-50 cm, 50-80 cm, 80-120 cm and 120-170cm soil layers from bottom to top in each profile layer, each soil sample is formed by multi-point sampling and mixing of corresponding soil layers, each soil layer uses aluminum boxes to collect soil samples, weighs wet weight on site, and measures soil moisture content (or soil moisture content) by drying method. Soil nutrient: the mixed soil sample is used for determining soil nutrient after removing plant root system, gravel and other impurities, air-drying indoors and sieving. Organic matter is heated by potassium dichromate, total nitrogen is treated by semi-micro-Kjeldahl method, total phosphorus is treated by sulfuric acid-perchloric acid-molybdenum antimony anti-colorimetric method, total potassium is treated by hydrofluoric acid-perchloric acid-flame photometer method, effective nitrogen is treated by alkaline hydrolysis diffusion method, effective phosphorus is treated by sodium bicarbonate leaching-molybdenum antimony anti-colorimetric method, effective potassium is treated by ammonium acetate leaching-flame photometer method, PH and conductivity are measured by acidimeter and conductivity meter respectively (water to soil ratio is 5: 1). Soil water-soluble total salt was determined by in-situ salinity meter. Drought stress is the most common form of plant adversity and is also the main factor affecting plant growth and development. Plant organs will undergo membrane lipid peroxidation under adverse circumstances, thus accumulating malondialdehyde (MDA), the final decomposition product of membrane lipid peroxide. MDA content is an important indicator reflecting the strength of membrane lipid peroxidation and the damage degree of plasma membrane, and is also an important parameter reflecting the damage of water stress to plants. At the same time, under adverse conditions, the increased metabolism of reactive oxygen species in plants will lead to the accumulation of reactive oxygen species or other peroxide radicals, thus damaging cell membranes. Superoxide dismutase (SOD) and peroxidase (POD) in plants can remove excess active oxygen in plants under drought and other adversities, maintain the metabolic balance of active oxygen, protect the structure of the membrane, and finally enhance the resistance of plants to adversities. The analysis samples take Populus euphratica, Tamarix chinensis and Phragmites communis as research objects. According to the location of groundwater monitoring wells, six sample plots are set up starting from the riverside, with an interval of 50 m between each sample plot, which are sample plots 1, 2, 3, 4, 5 and 6 in turn. Fresh leaves of plants are collected, stored at low temperature, and pretreated (dried or frozen) on the same day. PROline (Pro), cell membrane system protective enzymes superoxide dismutase (SOD) and peroxidase (POD) were tested indoors. Preparation of enzyme solution: weigh 0.5g of fresh material and add 4.5mL pH7.8 with ph 7.8. The materials were homogenized in a pre-frozen mortar, which was placed in an ice bath. Centrifuge at 10000 r/min for 15 min. The supernatant was used for determination of superoxide dismutase, peroxidase and malondialdehyde (MDA). PRO determination: put 0.03 g of material into a 20 mL large test tube, add 10mL ammonia-free distilled water, seal it, put it in a boiling water bath for 30min, cool it, filter, filtrate 5 mL+ ninhydrin 5 mL, develop color in boiling water for 60min, and extract with toluene. The extract was colorized with Shimadzu UV-265 UV spectrophotometer at 515 nm. SOD activity was measured by NBT photoreduction. The order of sample addition for enzyme reaction system is: pH 7.8 PBS 2.4mL+ riboflavin 0.2 mL+ methionine 0.2 mL+EDTA0.1 mL+ enzyme solution 0.1 mL+NBT0.2 mL. Then the test tube was reacted under 40001ux light for 20 min, and photochemical reduction was carried out. SOD activity was measured at 650 nm wavelength by UV-265 ultraviolet spectrophotometer. POD activity determination: the reaction mixture was 50 ml PBS with pH 6.0+28 μ L guaiacol+19 UL30% H2O2. 2 mL of reaction mixture +1 mL of enzyme solution, immediately start timing, reading every 1 min, reading at 470 nm. Determination of chlorophyll: ethanol acetone mixed solution method. After cutting the leaves, the mixed solution of 0.2 g and acetone: absolute ethanol = 1: 1 was weighed as the extraction solution. After extracting in the dark for 24 h, the leaves turned white and chlorophyll was dissolved in the extraction solution. The OD value of chlorophyll was measured by spectrophotometer at 652nm. Determination method of soluble sugar: phenol sulfate method is adopted. (1) The standard curve is made by taking 11 20 ml graduated test tubes, numbering them from 0 to 10 points, and adding solution and water according to Table 1 respectively. Then add 1 ml of 9% phenol solution to the test tube in sequence, shake it evenly, then add 5 ml of concentrated sulfuric acid from the front of the tube for 5 ~ 20 s, the total volume of the colorimetric solution is 8 ml, and leave it at constant temperature for 30 minutes for color development. Then, with blank as control, colorimetric determination was carried out at 485 nm wavelength. With sugar as abscissa and optical density as ordinate, a standard curve was drawn and the equation of the standard curve was obtained. (2) Extraction of soluble sugar: fresh plant leaves are taken, surface dirt is wiped clean, cut and mixed evenly, 0.1-0.3 g are weighed, 3 portions are respectively put into 3 calibration test tubes, 5-10 ml distilled water is added, plastic film is sealed, extraction is carried out in boiling water for 3O minutes, the extraction solution is filtered into a 25 ml volumetric flask, repeated flushing is carried out, and the volume is fixed to the calibration. (3) Absorb 0.5 g of sample solution into the test tube, add 1.5 ml of distilled water, and work out the content of soluble sugar in the same way as the standard curve. The amount of solution and water in each test tube Pipe number 0 1-2 3-4 5-6 7-8 9-10 1.100μg/L sugar solution 0.20 0.40 0.60 1.0 2. water/ml 2.0 1.8 1.6 1.4 1.2 1.0 3. Soluble sugar content/μ g 0 20 40 60 80 100 Determination of malondialdehyde: thiobarbituric acid method. Fresh leaves were cut to pieces, 0.5 g was weighed, 5% TCA5 ml was added, and the homogenate obtained after grinding was centrifuged at 3 000 r/rain for 10 rain. Take 2 ml supernatant, add 0.67% TBA 2 ml, mix, boil in 100 water bath for 30 rain, cool and centrifuge again. Using 0.67% TBA solution as blank, the OD values at 450, 532 and 600 nm were determined. Methods for analysis and testing of plant hormones (GA3, ABA, CK, IAA): 0.1 0.005 g plant samples were taken and ground in liquid nitrogen. 500μl methanol was extracted overnight at 4℃. Centrifuge the sample and freeze-dry the supernatant. 30μl10%% CH3CN dissolved the sample. 10μl of sample solution was analyzed by HPLC. The external standard method was used to quantify plant hormones. Standard plant hormones were purchased from sigma Company. See (Ruan Xiao, Wang Qiang, et al., 2000, Journal of Plant Physiology.26 (5), 402-406) for analysis methods.


Spatial distribution data of soil bulk density, irrigation experiment and field water holding capacity in Linze Pingchuan irrigation area of Heihe River Basin (2012)

In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated water capacity, soil organic matter, total nitrogen and inorganic carbon content were studied. PH value, electrical conductivity, total carbon, SiC and C / N were monitored to determine the physical and chemical properties of 0-20cm topsoil and the soil particle size composition of 0-20cm and 20-80cm soil layers. According to the soil properties of five different soil in cotton field, cotton irrigation experiment was carried out: irrigation amount, seed cotton yield, straw parameters, lint percentage, coat index, seed index, single boll weight, flower rate before frost, unit boll number, single boll weight, irrigation water productivity, etc.