Current Browsing: cryosphere


Inventory of glacial lakes in Nepal (2000)

This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

2020-06-09

Exchange data of research project on glacier change trend and its impact on water resources change in Tarim River Basin (2003-2005)

The glacial change trend in the Tarim River Basin and its impact on water resources change belong to the National Natural Science Foundation of China's Western Environment and Ecological Science major research project. The time is 2003.1-2005.12. The project submitted data: Kochikarbachi Glacier Observation Data (excel): Including precipitation, wind direction, wind speed and temperature data 1.3300a_climate (2003.6.29-2004.6.22): 4 hours data during the day, including field date, time, wind speed, wind up, temperature. 2.4200b_climate (2004.1.29-2004.5.12): 6:00, 8:00, 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00, 22: 00, 23:00 observation data, including field date, time, wind speed, wind up, temperature. 3.3700_Precipitation: 13 days daily precipitation from 2003.7 to 2005.9 4.4200_Precipitation: 18-day daily precipitation between 2003.7 and 2006. 6

2020-06-09

MODIS daily cloudless snow products in the Tibetan Plateau (2002-2010)

This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).

2020-06-08

China permafrost map based Circum-Arctic map of permafrost and ground-Ice conditions, Version 2 (1997)

The distribution map of permafrost and ground-ice around the Arctic is the only data map of permafrost compiled by the international permafrost association in collaboration with permafrost research institutes of several countries in 1997. The map describes the distribution and properties of permafrost and subsurface ice conditions in the northern hemisphere (20°N to 90°N). Permafrost was divided into continuous (90-100%), discontinuous (50-90%), sporadic (10-50%), island (<10%) and non-permafrost by continuous division of permafrost scope. The subsurface ice abundance at the top 20 m is divided by the percentage of ice volume (>20%, 10-20%, <10% and 0%). Published ESRI-shape files are based on 1:10 million paper maps (Brown et al. 1997). The map can be used in related research such as global climate change, polar resource development and environmental protection. The China section is shown in thumbnail. See the reference for more information (Heginbottom et al. 1993). The format of the data is the ESRI shapefile, you can download it on the snow and ice data center (http://nsidc.org/data/ggd318.html).

2020-06-08

The frozen soil type map of Kazakhstan (1:10,000,000) (2000)

The frozen soil type map of Kazakhstan (1:10,000,000) includes three .shp vector layers: 1, Polyline ranges.shp, indicating the extent of frozen soil; 2, Polygon kaz_perm.shp, frozen soil; 3, An attribute description Word file. The kaz_perm attribute table includes four fields: ID, REGION, SUBREGION, M_RANGE. Comparison of the main attributes: First, Area I. Altai-TienShan Second, Region: High mountains I.1. Altai, I.2. Saur-Tarbagatai, I.3.Dzhungarskyi, I.4. Northern Tien Shan, I.5. Western Tien Shan Intermountain depressions I.6. Zaysanskyi, I.7. Alakulskyi, I.8. Iliyskyi II. Western Siberian Second, Region: Planes II.1. Northern Kazakhstanskyi V. Western Kazakhstanskaya III. Kazakh small hills area IV. Turanskaya: IV.1. Turgayskyi IV.2. Near Aaralskyi IV.3. Chuysko-Syrdaryinskyi IV.4. South-Balkhashskyi V. Western Kazakhstanskaya: V.1. Mugodzhar-Uralskyi V.2. Near Caspian V.3. manghyshlak-Ustyrtskyi Third, Sub-region: I.1.1. Western Altai I.1.2. South Altai I.1.3. Kalbinskyi I.2.1. Tarbagatayskyi I.2.2. Saurskyi I.3.1. Nortern Dzhungarskyi I.3.2. Western Dzhungarskyi I.3.3. Southern Dzhungarskyi I.4.1. Kirgizskyi Alatau I.4.2. Zailiyskyi-Kungeyskyi I.4.3. Ketmenskyi I.4.4. Bayankolskyi I.5.1. Karatauskyi I.5.2. Talaso-Ugamskyi The layer projection information is as follows: GEOGCS["GCS_WGS_1984", DATUM["WGS_1984", SPHEROID["WGS_1984", 6378137.0, 298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree",0.0174532925199433]] Different regions feature different frozen soil attributes, and the specific attribute information can be found in the Word file.

2020-06-04

Glacier inventory dataset of Bhutan (2000)

This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1.The glacier inventory incorporates topographic map data, and reflects the status of glaciers in the region in 2000. 2.The spatial coverage of the glacier inventory includes the following: Pa Chu Sub-basin,Mo Chu Sub-basin,Thim Chu Sub-basin,Pho Chu Sub-basin,Mangde Chu Sub-basin, Chamkhar Chu Sub-basin,Kuri Chu Sub-basin,Dangme Chu Sub-basin,Northern Basin, etc. 3.The glacier inventory includes the following data fields: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4.Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.

2020-06-04

Map of the frozen soil distribution in the Republic of Mongolia (1990)

A map of the frozen soil distribution in the Republic of Mongolia is digitized from the National Atlas of the Republic of Mongolia (Sodnom and Yanshin, 1990). This data set describes the distribution and general properties of permafrost, seasonally frozen soil, and low-temperature phenomena in the Republic of Mongolia. Two plates were specifically digitized. The first plate, with a scale of 1:12,000,000, describes four general frozen soil regions: (1) continuous and discontinuous permafrost; (2) island-like and sparse island-like permafrost; (3) sporadic permafrost; and (4) seasonally frozen soil. The second plate, with a scale of 1:4,500,000, describes 14 different terrain types. The terrain types are divided based on elevation, annual average temperature, permafrost thickness, melting depth, and freezing depth of seasonally frozen soil. The locations of the six types of low-temperature phenomena in Mongolia are also included: pingos, ice cones, hot karst, detachment failures, solifluction, and cryoplatation processes. The data are provided in the ESRI shape file format and can be downloaded from the US Ice and Snow Data Center.

2020-06-04

Distribution map of frozen soil and subsurface ice in Russia (1:20,000,000) (1997)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

2020-06-04

Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

2020-06-04

NSIDC Antarctic sea ice dataset (1978-2017)

The data sets include four sets of data obtained from the Scanning Multi-channel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) sensors using passive microwave remote sensing inversion. SMMR was aboard the Nimbus-7 satellite, and its working period was from October 26, 1978 to July 8, 1987. Since July 1987, the data provided by the SSM/I and the SSMIS aboard the US Defense Meteorological Satellite Program (DMSP) satellite group have been used. The first three data sets contain sea ice concentration data, covering the Antarctic region with a spatial resolution of 25 km: (1) The data were obtained from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Version 1 by applying the NASA Team algorithm inversion. The temporal coverage is from November 1978 to February 2017, with a temporal resolution of one month. A bin file is stored every month. (2) The data source is the same as the first set. The temporal coverage is from 1978-10-26 to 2017-2-28. The temporal resolution is two days, and the spatial resolution is 25 km. A folder was stored every year, and a bin file was stored every other day. (3) The data were obtained from near-real-time DMSP SSMIS by applying the NASA Team algorithm inversion. The temporal coverage is from 2015-1-1 to 2018-2-3, and the temporal resolution is one day. A bin file is stored every day. Each file consists of a 300-byte file title (data time information, projection pattern, file name) and a 316*332 matrix. The fourth set of data is the sea ice coverage and sea ice area time series. The temporal coverage is from November 1978 to December 2017. This data set is a time series sequence of sea ice coverage and sea ice area in the Antarctic. The temporal resolution is one month, and an ASCII file is stored every month. Each file consists of a file title (time, data type), a 39*1 sea ice cover matrix and a 39*1 sea ice area matrix. For further details on the data, please visit the US Ice and Snow Data Center NSIDC website - Data Description http://nsidc.org/data/NSIDC-0051; http://nsidc.org/data/NSIDC-0081; http://nsidc.org/data/G02135

2020-06-03