The data includes the daily mean value of stable isotope δ18O in precipitation, the air temperature and precipitation amounts in Bomi in 2008; the precipitation samples are collected by Bomi meteorological station, and the stable isotope of precipitation is measured at the Laboratoire des Sciences du Climat et de l’Environnement, France., The δ18O amounts were measured by equilibration on a MAT-252 mass spectrometer, with an analytical precision of 0.05‰. The air temperatures and precipitation amounts were recorded for each precipitation events at Bomi meteorological stations, through the average of the observed temperature before and after the precipitation event, and through the total precipitation amount for each event. The data study has been published in the Journal of Climate, entitled Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling.
GAO Jing
Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM3M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours, daily and yearly scales.
PAN Xiaoduo ZHANG Lei
The data set is the daily precipitation stable isotope data (δ 18O, δ D, d-excess) from Satkhira, Barisal and sylhet3 stations in Bangladesh from 2017 to 2018. The data set was collected by Bangladesh Atomic Energy Commission (BAEC) and measured by picarro l2130i wavelength scanning cavity ring down spectrometer in the Key Laboratory of environment and surface processes, Institute of Qinghai Tibet Plateau, Chinese Academy of Sciences. Sampling location and time of three observation points: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
GAO Jing
Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.
GAO Jing
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
The stable oxygen isotope ratio (δ 18O) in precipitation is a comprehensive tracer of global atmospheric processes. Since the 1990s, efforts have been made to study the isotopic composition of precipitation at more than 20 stations located on the TP of the Tibetan Plateau, which are located at the air mass intersection between westerlies and monsoons. In this paper, we establish a database of monthly precipitation δ 18O over the Tibetan Plateau and use different models to evaluate the climate control of precipitation δ 18O over TP. The spatiotemporal pattern of precipitation δ 18O and its relationship with temperature and precipitation reveal three different domains, which are respectively related to westerly wind (North TP), Indian monsoon (South TP) and their transition.
GAO Jing
This dataset is derived from the paper: Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 This data contains supplementary material of this article. Researchers discovered well-preserved palm fossil leaves from the Lunpola Basin (32.033°N, 89.767°E), central Tibetan Plateau at a present elevation of 4655 m in 2016. Researchers compared the newly discovered fossil with those present fossil that are most similar, find that there is no similar leaves among present fossil, therefore, researchers proposed the new species <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. Using the climate model, combined with the research of the fossil, researchers rebuilt the paleoelevation of the central Tibetan Plateau, it shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. The data contains the following tables: 1) Table S1. Fossil records of palms around the world. 2) Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera. 3) Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to <em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov. This dataset also contains the figures in the supplementary material in the article.
SU Tao
This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
DING Jinzhi WANG Tao
This dataset is collected from the paper: Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. This data contains the genome assembly of alpine species Salix brachista on the Tibetan Plateau, it contains DNA, RNA, Protein files in Fasta format and the annotation file in gff format. Assembly Level: Draft genome in chromosome level Genome Representation: Full Genome Reference Genome: yes Assembly method: SMARTdenovo 1.0; CANU 1.3 Sequencing & coverage: PacBio 125.0; Illumina Hiseq X Ten 43.0; Oxford Nanopore Technologies 74.0 Statistics of Genome Assembly: Genome size (bp): 339,587,529 GC content: 34.15% Chromosomes sequence No.: 19 Organellas sequence No.: 2 Genome sequence No.: 30 Maximum genome sequence length (bp): 39,688,537 Minimum genome sequence length (bp): 57,080 Average genome sequence length (bp): 11,319,584 Genome sequence N50 (bp): 17,922,059 Genome sequence N90 (bp): 13,388,179 Annotation of Whole Genome Assembly: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 Please see attachments for more details of annotation. The tables in the Supplementary Information of this article can also be found in this dataset. The table list is represented in attachments. The accession no. of genome assembly is GWHAAZH00000000 (https://bigd.big.ac.cn/gwh/Assembly/663/show).
CHEN Jiahui YANG Yongping Richard John Abbott SUN Hang
This dataset includes the monthly precipitation data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2017. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 mm. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea.
PENG Shouzhang
This data set is from the paper: Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, q.z., Wang, H.Q., Spicer, t.e.v., Yue, Y.H., Shukla, A., Srivastava, g., Khan, M.A., BERA, S., and Mehrotra, R. 2017. Quantifying the rise of the Himalaya origin and implications for the South Asian monsoon. Geography, 45:215-218. This achievement is part of a series of research results of paleoaltitude carried out by Ding Lin' team. We reconstruct the rise of a segment of the southern flank of the Himalaya-Tibet orogen, to the south of the Lhasa terrane, using a paleoaltimeter based on paleoenthalpy encoded in fossil leaves from two new assemblages in southern Tibet (Liuqu and Qiabulin) and four previously known floras from the Himalaya foreland basin. U-Pb dating of zircons constrains the Liuqu flora to the latest Paleocene (ca. 56 Ma) and the Qiabulin flora to the earliest Miocene (21–19 Ma). The proto-Himalaya grew slowly against a high (~4 km) proto–Tibetan Plateau from ~1 km in the late Paleocene to ~2.3 km at the beginning of the Miocene, and achieved at least ~5.5 km by ca. 15 Ma. Contrasting precipitation patterns between the Himalaya-Tibet edifice and the Himalaya foreland basin for the past ~56 m.y. show progressive drying across southern Tibet, seemingly linked to the uplift of the Himalaya orogen.
DING Lin
This data is derived from the Supplementary Tables of the paper: Chen, F. H., Welker, F., Shen, C. C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S. E., Yu, T. L., Skinner, M. M., Stelzer, S., Dong, G. R., Fu, Q. M., Dong, G. H., Wang, J., Zhang, D. J., & Hublin, J. J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. This research is another breakthrough made by academician Fahu Chen and his team over the years research of human activities and environmental adaptation on the Tibetan Plateau. The research team analyzed the newly discovered hominid mandible fossils in Xiahe County, Gansu Province, China, and identified it belongs to Denisovan of the Tibetan Plateau, which suggested to call Xiahe Denisovan. The team conducted a multidisciplinary analysis of the fossil, including chronology, physique morphology, molecular archaeology, living environment and human adaptation. It is the first Denisovan fossil found outside the Denisova Cave in the Altai Mountains and the earliest evidence of human activity on the Tibetan Plateau (160 kyr BP). This study provides key evidence for further study of Denisovans' physical characteristics and distribution in East Asia, it also provides evidence of a deep evolutionary history of these archaic hominins within the challenging environment of the Tibetan Plateau. This data contains 6 tables, table name and contents are as follows: t1: Distances in mm between meshes generated from CT versus photoscans (PS). t2: Measurements of the Xiahe mandible after reconstruction. t3: Comparative Dental metrics. t4: Comparative crown morphology. t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses. t6: Specimen names and numbers.
CHEN Fahu
This dataset includes the monthly minimum temperature data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2017. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 ℃. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea.
PENG Shouzhang
This dataset includes the monthly maximum temperature data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2017. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 ℃. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea.
PENG Shouzhang
The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.
MA Yaoming
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C
Bob Su YANG Kun
Based on the long-term observation data of each field station in the alpine network and overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; the inversion of data products such as meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacial and frozen soil changes are completed through enhanced observation and sample site verification in key regions; based on the IOT Network technology, the development and establishment of multi station network meteorological, hydrological, ecological data management platform, to achieve real-time access to network data and remote control and sharing. In 2018, the hydrological data set of surface process and environmental observation network in China's alpine region mainly collects the daily measured hydrological (runoff, water level, water temperature, etc.) data of Qilianshan station, Southeast Tibet station, Zhufeng station, Yulong Xueshan station, Namucuo station, Ali station, mostag and other seven stations.
ZHU Liping PENG Ping
This dataset is collected from the Supplementary Materials part of the paper "Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347, 248–250.". In this paper, researchers analyzed animal bones, plant remains and other artefacts from 53 sites across the northeastern Tibetan plateau and found that humans began to relocate to the elevations above 4000 masl after the emergence of Barley. According to the study, the prehistoric human expansion into the higher, colder altitudes of the Tibetan plateau took place as the continental temperatures had themselves become colder after 3,600 calendar years before the present, thus, the key impetus of the expansion was agricultural innovation rather than climate change. This dataset contains 4 tables, table names and content are as follows: Data list: The data name list of the rest tables; t1: Calibrated radiocarbon dates and domesticated plant and animal remains from sites investigated on the NETP; t2: Radiocarbon dates of the Paleolithic sites on the Tibetan Plateau; t3: OSL dates of the Paleolithic sites on the Tibetan Plateau. See attachments for data details: Supplementary Materials.pdf, Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3,600 BP.pdf.
CHEN Fahu
Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.
HE Chansheng