This map was compiled by Li Xin and others in 2008 in order to re-count the permafrost area in China and based on the analysis of the existing permafrost map in China. It consists of three parts, of which the Qinghai-Tibet Plateau part uses the simulated permafrost map of the Qinghai-Tibet Plateau (Nanzhuo Copper, 2002), the northeast part comes from the "14 million map of China's Glacier, Frozen Soil and Desert" (Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences, 2006), and the other part uses the map of China's permafrost zoning and types (1: 10 million) (Zhou Youwu and others, 2000). More Information References (Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences, 2006; Nanzhuo Copper, 2002; Zhou Youwu et al., 2000; Li et al, 2008)。
LI Xin, NAN Zhuotong, ZHOU Youwu
Natural changes and human impacts of typical karst environments in historical periods: stalagmite recording project is a major research program of "Environmental and Ecological Science in Western China" sponsored by the National Natural Science Foundation of China. The person in charge is Tan Ming, a researcher at the Institute of Geology and Geophysics, Chinese Academy of Sciences. The project runs from January 2002 to December 2009. The temperature data of Beijing hot months (May, June, July and August) in 2650 (665 B.C.-A.D. 1985) are the results of the project. The data are reconstructed according to the correlation between the annual thickness of stalagmites in Shihua Cave in Beijing and meteorological observation data. The temperature signals reflected by soil carbon dioxide and cave dripping are amplified by the soil-organic matter-carbon dioxide system and recorded by the annual sequence of stalagmites. Although the general trend of temperature has decreased in recent thousands of years, the reconstructed temperature reveals that the climate has experienced repeated rapid warming on a century scale. This result is related to other records in the northern hemisphere, indicating that there is a hemispheric influence on the periodic changes of temperature in the sub-millennium scale. The data contains a txt file with attribute fields such as yr.AD, layer number, original thickness (um), maximum error in um (+-), sedimentary trend, detrended thickness (um), reconstructed temperature, maximum error in degree C (+ -), temperature anomaly, temperature anomaly + error, temperature anomaly-error, maximum error in age (yr. +-).
TAN Ming, ZHANG Hucai, LI Tieying
This data comes from "China's 1:100000 land use data". China's 1:100000 land use data is constructed in three years based on LANDSAT MSS, TM and ETM Remote sensing data by means of satellite remote sensing, organized by 19 research institutes affiliated to the Chinese Academy of Sciences under the national macro survey and dynamic research on remote sensing of resources and environment, a major application project of the eighth five year plan of the Chinese Academy of Sciences. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. This is the most accurate land use data product in China, which has played an important role in the national land resource survey, hydrological and ecological research.
LIU Jiyuan, ZHUANG Dafang, WANG Jianhua, WU Shixin, ZHOU Wancun
The dataset contains the observation data of the 10m tower automatic weather station on January 13, 2014 at solstice on December 31, 2014.The station is located in east garden town, huailai county, hebei province.The latitude and longitude of the observation point is 115.7880E, 40.3491N, and the altitude is 480m. The automatic weather station is installed on a 10m tower, the acquisition frequency is 30s, and the output time is 10min.The observation factors include air temperature and relative humidity (5m), and the direction is due north.The wind speed (10m), the wind direction (10m), the direction is due to the north;Air pressure (installed in waterproof box);Rainfall (10m);The four-component radiation (5m), the direction is due to the south;The infrared surface temperature (5m), the arm is facing south, and the probe is facing vertically downward.The soil temperature and humidity probe was buried 1.5m south of the meteorological tower. The soil temperature probe was buried at a depth of 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. The soil moisture sensor was buried at a depth of 2cm, 4cm, 10cm, 20cm, 80cm, 120cm and 160cm.The average soil temperature was buried 2,4 cm underground.Soil hot flow plates (3) are buried in the ground 6cm.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: 2014-6-10-10:30.January 13 - March 26 due to probe problems, soil moisture data at a depth of 20cm was wrong;From January 21 to March 26, due to probe problems, soil moisture data at a depth of 120cm was wrong;From March 17 to March 26 due to probe problems, soil moisture data at depth of 2,4,10,20 cm were wrong.The soil heat flux G2 had a problem on June 16, BBB 0, July 9 due to the hot plate problem. Guo et al, 2020 is used for site introduction and Liu et al, 2013 for data processing
LIU Shaomin, XU Ziwei
This data set records the statistical data of the total wages of the employees of all units in Qinghai Province by industry, and the data is divided by industry, region, subordinate relationship, etc. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains eight data tables, which are: all employees by industry (2011). XLS, all employees by industry (2012). XLS, all employees by industry (2010-2013). XLS, total wages by industry (2010-2014). XLS, all employees by industry (2011-2015). XLS, all employees by industry (2011-2015) The number of employed persons of ministry units is 2011-2016.xls, that of employed persons of all units is 2012-2017.xls by industry, and that of employed persons of all units is 2013-2018.xls by industry. The data table structure is the same. For example, the data table in 2011 has two fields: Field 1: Project Field 2: year
Qinghai Provincial Bureau of Statistics
This data is from "China 1:100,000 land use data".China 1:100,000 land use data was constructed in three years based on Landsat MSS, TM and ETM remote sensing data by using satellite remote sensing as a means to organize remote sensing science and technology teams from 19 institutes affiliated to the Chinese academy of sciences (cas) in the "eighth five-year plan" major application project "national macro survey and dynamic research on remote sensing of resources and environment". According to the 1:100,000 land use data of gansu province, a hierarchical land cover classification system is adopted, which divides the whole country into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 secondary categories.It is the most accurate land use data product in China and has played an important role in national land resource survey, hydrological and ecological research.
LIU Jiyuan, ZHUANG Dafang, WANG Jianhua, ZHOU Wancun, WU Shixin
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
WANG Jianhua, LIU Jiyuan, ZHUANG Dafang, ZHOU Wancun, WU Shixin
This data set records the statistical data of industrial added value, total profit, asset contribution rate and ranking (2001-2010) of all regions in China, and the data are divided by year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains 10 data tables with the same structure. For example, the data table in 2010 has four fields: Field 1: Province (city, district) Field 2: industrial added value Field 3: total profit Field 4: contribution rate of total assets
Qinghai Provincial Bureau of Statistics
The dataset contains vortex correlator observation data from January 1, 2008, solstice, December 31, 2010.The station is located in weishanzhuang, daxing district, Beijing.The latitude and longitude of the observation point are 116.4271E, 39.6213N and 20m above sea level. The acquisition frequency of the eddy correlates instrument is 10Hz, the frame height is 3m, the ultrasonic direction is 295 ° (due north direction is 0 °), and the distance between the ultrasonic anemometer and the CO2/H2O analyzer is 18cm.The published data is the 30-minute data obtained by the post-processing of the original collected 10Hz data with Edire software. The main steps of the processing include: outfield value elimination, delay time correction, coordinate rotation (plane fitting), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Edire software was also screened :(1) the data when the instrument was wrong was removed;(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 3% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999. The observation data released by vortex correlator include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), the length of cloth hoff, sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into nine grades (quality logo 1: (0 < Δ st < 15, 0 < ITC < 30);2: (16 < < 30, 0 < ITC Δ st < 30);3: (0 < Δ st < 30, 31 < ITC < 75);4: (31 < < 75, 0 < ITC Δ st < 30);5: (0 < Δ st < 75, 31 < ITC < 100);6 (76 < < 100, ITC Δ st < 100);7: (Δ st < 250, ITC < 250);8: (Δ st < 1000, ITC < 1000);The rest are 9).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Jia et al,(2012) for information of observation test or site, and Liu et al,(2013) for data processing.
LIU Shaomin, XU Ziwei
This data set contains the observation data of vortex correlativity instrument at yakou station upstream of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in qilian county, qinghai province.The latitude and longitude of the observation point is 100.2421, 38.0142N, and the altitude is 4148 m.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic direction is due to the north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm. The original observation data of vorticity correlativity is 10Hz, and the released data is the data of 30 minutes processed by Eddypro software. The main steps of its processing include: outfield value elimination, delay time correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened.(2) data of 1h before and after precipitation were excluded;(3) the missing rate of 10Hz original data is more than 10% every 30min;(4) the observed data of weak turbulence at night were excluded (u* less than 0.1m/s).The average period of observation data was 30 minutes, 48 data a day, and the missing data was marked as -6999.April 13-14, instrument calibration, data missing.Suspicious data caused by instrument drift shall be identified in red.The eddy current correlator will be short of electricity at night in winter, resulting in the loss of data. Observations published include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Carbon dioxide flux mass identification QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest are 2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Liu et al. (2018) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
The data of farmland distribution on the Qinghai-Tibet Plateau were extracted on the basis of the land use dataset in China (2015). The dataset is mainly based on landsat 8 remote sensing images, which are generated by manual visual interpretation. The land use types mainly include the cultivated land, which is divided into two categories, including paddy land (1) and dry land (2). The spatial resolution of the data is 30m, and the time is 2015. The projection coordinate system is D_Krasovsky_1940_Albers. And the central meridian was 105°E and the two standard latitudes of the projection system were 25°N and 47°N, respectively. The data are stored in TIFF format, named “farmland distribution”, and the data volume is 4.39GB. The data were saved in compressed file format, named “30 m grid data of farmland distribution in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for farmland ecosystem management on the QTP.
LIU Shiliang, SUN Yongxiu, LI Mingqi
In order to investigate the variation characteristics of agricultural water resources vulnerability in Central Asia, an index system was established with 18 indicators from three components, namely exposure, sensitivity and adaptation, according to the scheme of vulnerability assessment. Based on the socio-economic, topography, land cover and soil data, agricultural water resources vulnerability were calculated using the Equal-Weights and Principal Component Analysis (PCA) method. Each original raster data is resampled, starting from the upper-left corner of the original grid, and extending to the adjacent right and lower grids in turn, and every four grids (0.5 °) are merged into one grid, taking the median data as the center point value corresponding to four grid of geographic coordinates. The extreme values of the grids could be eliminated. The data sets includes 1992-1996, 1997-2001, 2002-2006, 2007-2011, 2012-2017and 1992-2017with a spatial resolution of 0.5°*0.5°. It is expected to provide basic data support for agricultural water supply and demand, development and utilization analysis in five central Asian countries.
LI Lanhai, YU Shui
The Randolph Glacier Inventory (RGI) is a complete inventory of global glacier outlines published by GLIMS (Global Land Ice Measurements from Space). It is currently available in six versions: Version 1.0 was published in February 2012, version 2.0 was published in June 2012, version 3.0 was published in April 2013, version 4.0 was published in December 2014, version 5.0 was published in July 2015, and version 6.0 was published in July 2017. The data sets include four versions, which are 6.0, 5.0, 4.0 and 3.2 (revision, August 2013). The data are organized according to different regions. In each region, each glacier record includes a shape file (.shp file and its corresponding .dbf, .prj, and .shx files) and a .csv file of height measurement data. The data are from GLIMS: Global Land Ice Measurements from Space (http://www.glims.org/RGI/) Data quality checks include geometry, topology, and certain attributes, and the following checks were performed: 1) All polygons were checked by the ArcGIS Repair Geometry tool. 2) Glaciers with areas less than 0.01 square kilometres were removed. 3) The topology was checked with the Does Not Overlap rule. 4) The attribute sheet was checked by Fortran subroutines and Python scripts for data quality.
Global Land Ice Measurements from Space
Based on the historical documents, the changes of water resources management organization and management system in Heihe River Basin are sorted out. In this paper, the historical records of water resource management institutions, official positions and their positions, water resource management laws and regulations, and water affairs contradictions in the Heihe River Basin since the Western Han Dynasty are reviewed. From the Western Han Dynasty to the 1950s.
ZHANG Zhiqiang
On July 7, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
WANG Shuguo, MA Mingguo, LI Xin
Data set of key elements of desertification in Central and Western Asia (Amu river Basin), includes three parts: lakes distribution data, vegetation coverage data and NPP data. The spatial resolution of lakes distribution data and vegetation coverage data is 30 m, and includes three periods: 1990, 2000 and 2010. It is based on the interpretation and calculation of TM/ETM data; The spatial resolution of NPP data is 500 m, and includes two periods: 2000 and 2010 (Since no MODIS data in 1990, there is no 1990 data). It is based on the calculation of MODIS data. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
XU Wenqiang
Two shallow drills near Heiquan in the middle reaches of Heihe River are 140 meters and 68.2 meters deep respectively. The physical and chemical indexes of the two boreholes are analyzed, including grain size and heavy mineral analysis.
PAN Baotian, HU Xiaofei
This data set contains the element content data of a deep drilled formation near the open sea in the middle reaches of Heihe River. The borehole is located at 99.432 E and 39.463 n with a depth of 550m. The element scanning analysis was carried out at 1-3cm intervals for the drilled strata. The scanning was completed in the Key Laboratory of Western Ministry of environmental education, Lanzhou University, and 38705 effective element data were obtained.
HU Xiaofei, PAN Baotian
This data set was acquired by the L & K band airborne microwave radiometer on the morning of April 1, 2008, in the A'rou flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 8:06 (Beijing time, the same below) and landed at 11:17. 8: 50-10:13 fly from north to south, observe and reserve 10 routes, flight height is about 4100m, flight speed is about 260km / hr. 10: At 20-10:35, Jiafei 6-8 and 6-9 lines completed the observation. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
WANG Shuguo, WANG Xufeng, CHE Tao, ZHAO Kai, JIN Jinan, XIAO Qing, LIU Qiang
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2019. The site (100.44640° E, 38.97514° N) was located in the Zhangye City in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Flux data during February 20 to March 11, March 23 to April 11, and May 17 to June 5, 201 were missing to the power loss. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei, ZHANG Yang