In the past 50 years, under the background of global climate change, with the increase of population and economic development, Eurasian grassland has been seriously degraded. One belt, one road surface, is a key indicator of grassland quality. Its spatial temporal pattern and distribution can directly reflect the degradation of grassland. Effective assessment of grassland quality is of great significance for the sustainable development of the countries along the border and the promotion of China's "one belt and one road" strategy. In previous studies, there is room for improvement in accuracy and accuracy of spatial and temporal distribution of soil properties. With the development of geographic information system, global positioning system, various sensors and soil mapping technology, digital soil mapping has gradually become an efficient method to express the spatial distribution of soil. Based on soil landscape science and spatial autocorrelation theory, this study combined multi-source sample data and environmental covariate data, and used machine learning model to predict the spatial distribution of surface soil attributes of warm grassland in Eurasia around 2000. In order to solve the problem of soil sample standardization, the equal area spline function was used to fit the soil properties of different profiles to the soil properties of 20 cm in the surface layer, and the soil particle distribution parameter model was used to transform the classification standards of different soil textures into the United States system. In order to solve the problem of insufficient number of soil samples, pseudo expert observation points were used to supplement soil organic matter and sand content samples in under sampling area; stepwise regression combined with support vector machine model was used, and effective soil bulk density simulation samples were screened by calculating threshold. According to the characteristics of complex terrain and climate conditions, combined with multi-source remote sensing data, ngboost model is applied to mine the relationship between soil attributes and environmental landscape factors (topography, climate, vegetation, soil type, etc.) and spatial location based on sample points, and to predict soil organic matter, sand content and bulk density in the study area from 1980 to 1999 and 2000 to 2019 respectively, and the uncertainty of corresponding indicators is given Spatial distribution of sex. The spatial distribution trend of the simulated soil attribute indexes is consistent with the actual situation. Before 2000, the soil organic matter content, bulk density and sand content were 0.64, 0.35 and 0.44 respectively, and the RMSE were 0.25, 0.07 and 13.94 respectively; after 2000, the RMSE were 0.79, 0.77 and 0.86 respectively, and the RMSE were 0.2, 0.13 and 6.61 respectively. The results show that this method can effectively retrieve the soil physical and chemical properties of temperate grassland in Eurasia, and provide a basis for the evaluation of grassland degradation and the construction of grassland quality evaluation system.
ZHANG Na
This data set mainly includes the whole rock SR Nd isotopic data of 83 magmatic rocks from the Hoh Xil- basin to Lhasa block in the Qinghai Tibet Plateau. The samples are mainly distributed in Hoh Xil- lake, Guoganjianian in the South Qiangtang, Dugur, Nasongduo and Saga counties in the Gangdise. Rock samples include olivine leucite, quartz monzonite, diorite and granite. The data mainly come from published articles or articles in the acceptance stage. MC-ICP-MS was used to measure SR Nd isotopes in Guangzhou Institute of geochemistry, Chinese Academy of Sciences and other key laboratories. The published articles of the data set have been included in high-level SCI or Ni journals, and the data results are true and reliable. In the future, it can be used to study the lithospheric evolution and magmatic genesis of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei QI Yue WANG Jun ZHOU Jinsheng
The EPMA data set of single mineral of magmatic rocks in the Qinghai Tibet Plateau is mainly based on the main data of single mineral in some areas of the Hoh Xil Lhasa plate, and the single mineral test points are more than 1000. The samples were distributed in Hoh Xil lake, Baohu Lake in South Qiangtang and Narusongduo area in Gangdise. Cameca sxlivefe electron microprobe was used for single mineral electron probe. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including American mineralogist and Journal of petroleum. The main testing units are Guangzhou Institute of geochemistry, Chinese Academy of Sciences and Institute of mineral resources, Chinese Academy of Geological Sciences. The data set can be used to study the petrogenesis of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian QI Yue WANG Jun ZHOU Jinsheng
Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.
YANG Fan LUO Zhicai
Lithofacies analysis is an important research method to explore the source region, background, and nature of sedimentary basins. Through the systematic investigation of several late Cretaceous strata in Nepal, situated on the south flank of the Himalayas, the Tulsipur and Butwal sections conducted detailed lithology and sedimentary facies analysis. Continuous strata include the Taltang Fm. , Amile Fm. , Bhainskati Fm. and Dumri Fm. from bottom to top. The lithology contains terrigenous clastic rocks such as conglomerate, sandstone, siltstone and mudstone, chemical rocks such as limestone and siliceous rock, as well as special lithology such as coal seam, carbonaceous layer and oxidation crust. Both sections have various colors and sedimentary structures, which are good materials for the analysis of lithofacies evolution. According to the characteristics of lithofacies and sedimentary assemblage revealed that the Nepal sedimentary environment evolution during the late Cretaceous, which experienced the marine, fluvial, lacustrine, and delta evolution process.
MENG Qingquan
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
ZHANG Chi Geping Luo
The long-time series data set of extreme precipitation index in the arid region of Central Asia contains 10 extreme precipitation index long-time series data of 49 stations. Based on the daily precipitation data of the global daily climate historical data network (ghcn-d), the data quality control and outlier elimination were used to select the stations that meet the extreme precipitation index calculation. Ten extreme precipitation indexes (prcptot, SDII, rx1day, rx5day, r95ptot, r99ptot, R10, R20) defined by the joint expert group on climate change detection and index (etccdi) were calculated 、CWD、CDD)。 Among them, there are 15 time series from 1925 to 2005. This data set can be used to detect and analyze the frequency and trend of extreme precipitation events in the arid region of Central Asia under global climate change, and can also be used as basic data to explore the impact of extreme precipitation events on agricultural production and life and property losses.
YAO Junqiang CHEN Jing LI Jiangang
The gridded desertification risk data of Iranian plateau in 2019 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in Iranian plateau in 2019.
XU Wenqiang
Guided by the theory of plate tectonics, paleogeography, petroliferous basin analysis and sedimentary basin dynamics, we have collected a large number of data and achievements of geological research and petroleum geology in recent years, including strata, sedimentation, paleontology, paleogeography, paleoenvironment, paleoclimate, structure, oil and gas (potash) geology and other basic materials, especially paleomagnetism, Paleogene Based on the data of detrital zircon and geochemistry, combined with the results of typical measured stratigraphic sections, the lithofacies and climate paleogeographic pattern of Cretaceous were restored and reconstructed, and two lithofacies paleogeographic maps of early and late Cretaceous of Pan tertiary and two climate paleogeographic maps of early and late Cretaceous of Pan tertiary were obtained, aiming at discussing the influence of paleogeography, paleostructure and paleoclimate In order to reveal the geological conditions and resource distribution of oil and gas formation, and provide scientific basis and technical support for China's overseas and domestic oil and gas exploration deployment.
LI Yalin
The data set is the surface element data of Muli coal mining area in Qinghai Tibet Plateau from 2000 to 2020, which is issued every five years, with a total of five periods; it includes four sub Atlas: surface albedo, vegetation index, vegetation coverage and soil moisture, with a total of 40 image data (20 original grid data + 20 RGB composite data). The data set is a rectangular area, which is defined according to the four boundaries of the southeast, northwest and north of Muli coal mine. The surface albedo is based on landsat8 and landsat5 Remote sensing satellite, according to the annual average value calculated by Mr. Liang Shunlin's method; vegetation index using normalized vegetation index NDVI, using the maximum value synthesis method to produce the annual maximum NDVI image; vegetation coverage is based on the annual maximum NDVI composite image, using pixel binary model to calculate the annual value; soil moisture is based on TVDI method, using soil moisture measurement Data and regression method were used to make the average soil volume water content in August of each period. The data are all in grid format, and the spatial resolution is 30 meters. The data set has a certain guiding and reference significance for the study of the changes of surface elements in the Qinghai Tibet Plateau, and provides a certain value reference for the study of the changes of water resources in the Qinghai Tibet Plateau.
LIU Zhenwei CHEN Shaohui
Soil moisture is one of the core variables in the water cycle. Although its variation is very small, for a precipitation process, soil moisture directly determines the transformation of precipitation into evaporation, runoff and groundwater, which is very important to finely simulate spatial-temporal dynamics of various variables in hydrological process and to accurately estimate water inflow in the upper reaches of Heihe River. This dataset includes soil moisture and temperature data observed by 40 nodes from July 2013 to December 2017. Each node in Babao River Basin has soil moisture observation at depth of 4cm and 20cm; some nodes also include observations at depth of 10 cm. The data observation frequency is 1 hour. The dataset can provide ground -based observations for hydrological simulation, data assimilation and remote sensing verification.
JIN Rui KANG Jian
Zircon HF-O data sets of magmatic rocks in the Qinghai Tibet Plateau are mainly based on zircon HF-O isotopic data of local areas from the South Qiangtang to Lhasa plate. Zircon HF-O test points are mainly concentrated in guoganjianian mountain, baohu, Duguer of South Qiangtang and saga County of Lhasa plate. The rocks are mainly mafic dyke swarms, gneissic granite and diorite. Zircon HF-O was measured by MC-ICP-MS and Sims, respectively. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including geology, BSA bulletin and Journal of petroleum, and the data results were true and reliable. The main testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data set can be used to study the petrogenesis and lithospheric evolution of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei WANG Jun QI Yue
The data set is a 2015 heat wave risk data set in Dhaka, Bangladesh, with a spatial resolution of 30m and a temporal resolution of year. Heat wave risk refers to the probability or loss possibility of harmful consequences caused by the interaction between heat wave hazard (possible heat wave events in the future), heat wave exposure (total population, livelihood and assets in the area where heat wave events may occur) and heat wave vulnerability (the tendency of the disaster bearing body to suffer adverse effects when affected by heat wave events) . The risk assessment method of heat wave is "hazard-exposure-vulnerability". The data set has been proved by experts, which can provide support for regional high temperature heat wave risk assessment.
YANG Fei YIN Cong
The data set is a 2015 heat wave hazard, exposure and vulnerability data set in Dhaka, Bangladesh, with a spatial resolution of 30m and a temporal resolution of yearly. Heat wave hazard is an index to measure the severity of heat wave event, which is expressed by surface temperature; heat wave exposure refers to the degree that human, livelihood and economy may be adversely affected, which is expressed by nighttime lighting data, and population density. The population older than 65 and younger than 5 years old constitute vulnerable groups; heat wave vulnerability is a measure of increased / reduced risk in the environment. The distance from road / hospital and ambulance station / water body, NDVI, impervious layer and slum area are used to represent the vulnerability of high temperature heat wave. The data set has been proved by experts, which can provide support for regional high temperature heat wave risk assessment.
YANG Fei YIN Cong
The single mineral dating data set of magmatic rocks in the Qinghai Tibet Plateau is mainly zircon dating in some areas of the Hoh Xil Lhasa plate, with 34 zircon dating samples. The samples are mainly from baohu, guoganjianianshan and Dugur areas of South Qiangtang, Saga county and narusongduo areas of Lhasa plate. The rocks are mainly quartz monzonite, granite and diorite. The zircon dating methods include Sims and LA-ICPMS. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including geology, BSA bulletin and Journal of petroleum, and the data results were true and reliable. The main testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data set can be used to study the age of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei ZHOU Jinsheng QI Yue WANG Jun
This data set mainly includes the non-traditional B-Mo isotopic data of Himalayan Leucogranites, which is mainly used to study the mechanism of B-Mo isotopic fractionation during the melting process, and is of great significance to the genetic study of Himalayan Leucogranites. The rocks are mainly from the granite in the Cuonadong area. Among them, there are 34 Mo samples and 48 B samples, including repeated samples. MC-ICP-MS was used for B-Mo isotopic analysis. ICP-AES and MC-ICP-MS were used for B and Mo contents in solution. The testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data are from accepted articles published in the Journal of geochimica et cosmochimica Acta, and the data are true and reliable. It can be applied to the study of unconventional isotope fractionation and the genesis of magmatic rocks.
FAN Jingjing
The data set is the land cover data set of 2010 and 2020. The spatial range is Dhaka City, Bangladesh. The spatial resolution is 30m and the temporal resolution is year. The data comes from globeland30 (Global geographic information public goods, http://www.globallandcover.com/ ), acquired after mosaic and reorganization. The data accuracy evaluation of the source data is led by Tongji University and Institute of aerospace information innovation, Chinese Academy of Sciences. The overall accuracy of the data is more than 83.50%. The data set can provide high-precision basic geographic information for related research, and has important applications in resource and environment bearing state identification, natural disaster risk assessment, disaster prevention and mitigation, etc.
YANG Fei YIN Cong
The data of farmland distribution on the Qinghai-Tibet Plateau were extracted on the basis of the land use dataset in China (2015). The dataset is mainly based on landsat 8 remote sensing images, which are generated by manual visual interpretation. The land use types mainly include the cultivated land, which is divided into two categories, including paddy land (1) and dry land (2). The spatial resolution of the data is 30m, and the time is 2015. The projection coordinate system is D_Krasovsky_1940_Albers. And the central meridian was 105°E and the two standard latitudes of the projection system were 25°N and 47°N, respectively. The data are stored in TIFF format, named “farmland distribution”, and the data volume is 4.39GB. The data were saved in compressed file format, named “30 m grid data of farmland distribution in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for farmland ecosystem management on the QTP.
LIU Shiliang SUN Yongxiu LI Mingqi
The Grassland Degradation Assessment Dataset in agricultural and pastoral areas of the Qinghai-Tibet Plateau (QTP) is a data set based on the 500m Global Land Degradation Assessment Data (2015), which is evaluated according to the degree of grassland degradation or improvement. In this dataset, the grassland degradation of the QTP was divided into two evaluation systems. At the first level, the grassland degradation assessment was divided into 3 types, including no change type, improvement type and degradation type. At the second level, the grassland degradation assessment on the QTP was divided into 9 types, among which the type with no change was class 1, represented by 0. There were 4 types of improvement: slight improvement (3), relatively significant improvement (6), significant improvement (9) and extremely significant improvement (12). The degradation types can be divided into 4 categories: slight degradation (-3), relatively obvious degradation (-6), obvious degradation (-9) and extremely obvious degradation (-12). This dataset covers all grassland areas on the QTP with a spatial resolution of 500m and a time of 2015. The projection coordinate system is D_Krasovsky_1940_Albers. The data are stored in TIFF format, named “grassdegrad”, and the data volume is 94.76 MB. The data were saved in compressed file format, named “500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The file volume is 2.54 MB. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for grassland ecosystem management and restoration on the QTP.
LIU Shiliang SUN Yongxiu LIU Yixuan
The data set was obtained from UAV aerial photography during the field investigation of the Qinghai Tibet Plateau in August 2020. The data size is 10.1 GB, including more than 11600 aerial photos. The shooting sites mainly include Lhasa, Shannan, Shigatse and other areas along the road, residential areas and surrounding areas. The aerial photos mainly reflect the local land use / cover type, facility agriculture distribution, grassland coverage and other information. The aerial photos have longitude, latitude and altitude information, which can provide better verification information for land use / cover remote sensing interpretation, and can also be used for vegetation coverage estimation, and provide better reference information for land use research in the study area.
LV Changhe LIU Yaqun
Taking villages and towns as the basic division unit, the division map of agricultural development in the Tibetan Plateau comprehensively considers climate, topography, vegetation type and coverage, land use type and proportion, distribution of nature reserves, key points of ecological protection and direction of agricultural development, puts forward the zoning scheme of agricultural and animal husbandry regulation for ecological protection in Qinghai Tibet Plateau, and divides the Qinghai Tibet Plateau into 8 areas (3 areas are based on ecological protection) The protection areas are the key limited control areas of agriculture and animal husbandry, 5 moderate development areas of agriculture and 23 small areas, and the zoning is named by the way of protection + development direction of agriculture and animal husbandry. The purpose of the zoning map is to develop agriculture and animal husbandry moderately on the basis of effective ecological protection, which can provide reference information for the protection of ecological security barrier function and sustainable management.
LV Changhe LIU Yaqun
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
TANG Gongjian WANG Jun QI Yue ZHOU Jinsheng DAN Wei
The birds along elevation gradients in Gangrigabu Mountains were investigated by point count method. With a 400-meter elevational gradient, elevation zones were set up in the survey area. Five elevation zones were built in the north slope from TongMai Town to Galong Temple in Bome County, and 8 elevation zones were built in the south slope from Jiefang Bridge to Galongla in Medog County. So that we can make clear about the pattern and maintenance mechanism of bird diversity along elevation gradients in this region. The data of bird diversity and distribution will be used to further explore the key scientific issues such as the impact of climate change on bird diversity and adaptation strategies, and the response and protection strategies of bird species diversity under the global climate change.
YANG Xiaojun
This data set includes apatite and zircon (U-Th) / He ages, apatite fission-track (AFT) ages of the Yalong River thrust belt, which will be continuously updated in the future. The first part is the apatite and zircon He and apatite fission-track data from the Yunongxi fault, a branch fault in the hinterland of the Yalong River thrust belt. The second part of the data is from the Jinping Shan-Muli fault, a branch of the Yalong River thrust belt, including apatite and zircon He ages data. The data results are concentrated, which well constrain the evolution of the Yalong River thrust belt and provide a high-quality chronological basis for exploring its role in the process of plateau expansion.
ZHANG Huiping
Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.
ZHAN Jinyan TENG Yanmin LIU Shiliang
In November 2020, we made a collection in Qinghai Tibet Plateau were collected by net and electric capture methods, and the sampling area included the main water systems in Qinghai Province. A total of 30 sampling points were collected, and 685 fish specimens were collected in 12 points, including Schizothorax of loach.This work is a part of the project of “Building Methods for Detection of Aquatic Organisms in the Lake System of the Qinghai-Tibet Plateau”, using traditional fish survey data to generate a list of species in the lake system, which will then be used to combine multiple lakes in the plateau. High-throughput molecular data acquired from the system's environmental water samples and tested for visual parameters (lake size, isolation, geographic location, and spectral characteristics) that can be used to predict aquatic biodiversity.
LIU Shuwei
From October to November 2020, we used both live traps and camera traps to collect mammal diversity and distributions along the elevational gradients at the Yarlung Zangbo Grand Canyon National Nature Reserve. We set trap lines for small mammals inventory, with a total of 8000 live trap nights. We collected 526 individuals and1052 tissue samples of small mammals during the field sampling. We also retrived images of 130 camera traps placed between May 2020 and October 2020. We obtained 4218 pictures of wild animals,25 species of large and medium mammals were recorded.. The camera traps were reset in the same locations after renew batteries and memory cards. Small mammal data consist of richness, abundance, traits, environmental gradients etc, and could be used to model relationship between environmental gradients and traits concatenated by richness matrix. Camera trap data could inventory endangered species in the region, and provide information to identify biodiversity hotspots and conservation priorities.
LI Xueyou
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2018, collected by lysimeters, which are located at 115.788 E, 40.349 N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g.2018-6-10 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin ZHU Zhongli XU Ziwei
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2019, collected by lysimeters, which are located at 115.788E, 40.349N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g. 2019-01-01 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin ZHU Zhongli XU Ziwei
1) Data content: Paleomagnetic data, magnetic index data, major element percentage data and chemical weathering index can establish the paleomagnetic age framework of the Dahonggou section and restore the precipitation change and chemical weathering history in geological history. 2) Data sources and processing methods The data source is experimental data. Paleomagnetic data: a cylindrical sample of 2x2x2cm was drilled with a small gasoline drill and measured with a low-temperature superconducting magnetometer in a magnetic shielding room. Magnetic data: the samples collected in the field were ground into fine particles by mortar and put into 2x2x2 non-magnetic plastic box, and tested by kappa bridge susceptibility meter, pulse magnetometer and rotating magnetometer. Mass percentage content and chemical weathering index data of major elements in the whole sample and particle size fraction: firstly, the whole sample and particle size fraction sample were pretreated with acetic acid and hydrogen peroxide to remove carbonate and organic matter, and then pressed into a round cake with a diameter of about 4cm and a thickness of about 8mm by a pressure apparatus, and finally XRF fluorescence analysis was carried out. 3) Data quality The sample collection and experimental processing are carried out according to strict standards, and the data quality is reliable. 4) Data application achievements and Prospects Three SCI papers were published using this set of data, one of which is Ni.
NIE Junsheng
The data include the Cenozoic plant fossils collected from Gansu, Qinghai and Yunnan by the Department of paleontology, School of Geological Sciences and mineral resources, Lanzhou University from 2019 to 2020. All the fossils were collected by the team members in the field and processed in the laboratory by conventional fossil restoration methods and cuticle experiment methods. The fossils are basically well preserved, some of which are horned The study of these plant fossils is helpful to understand the Cenozoic paleoenvironment, paleoclimate, paleogeographic changes and vegetation features of the eastern Qinghai Tibet Plateau.
YANG Tao
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to October 24 in 2019. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7923° E, 40.3574°N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. There were lots of negative values of H2O density in winter where filling by -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XIAO Qing XU Ziwei BAI Junhua
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 3 in 2019. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the Huailai station eddy covariance system (EC) from January 1 to December 31 in 2018. The site (115.7880° E, 40.3491° N) was located in the maize surface, near Donghuayuan town of Huailai city in Hebei Province. The elevation is 480 m. The EC was installed at a height of 5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2019. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2017. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2017-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Yang et al. (2015) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2019. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2018. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin XU Ziwei
The data set records the surface water quality assessment data set of the Yangtze River mainstream (2008.3-2020.6). The data are collected from Yushu ecological environment bureau. The data set contains 226 files, including: water quality assessment of surface water in June 2010, water quality assessment of surface water in July 2010, water quality assessment of surface water in August 2010, water quality assessment of surface water in August 2011, and water quality assessment of surface water in April 2012. Each data table has seven fields: Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Department of Ecology and Environment of Qinghai Province
The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture
The data set records the supervisory monitoring results of sewage treatment plants in Zeku County, Gangcha County, Haiyan County, Qilian County, Henan County, Jianzha county and Tongren County (2020.1-2020.6). The data is collected from the Department of ecological environment of Qinghai Province. The data set contains seven documents, namely: supervisory monitoring of Gangcha sewage treatment plant in 2020.pdf, In 2020, Haiyan County sewage treatment plant of Haibei Prefecture was monitored.pdf; in 2020, Qilian sewage treatment plant was monitored.pdf; in the first half of 2020, Jianzha county sewage treatment plant was monitored; in the first half of 2020, Tongren County sewage treatment plant was monitored; in the first half of 2020, Zeku County sewage treatment plant was monitored; in the first half of 2020, Henan county sewage treatment plant was monitored The results of supervision monitoring. The data monitoring entrusted units are Zeku County, Gangcha County, Haiyan County, Qilian County, Henan County, Jianzha county and Tongren County Environmental Bureau; Detection point: inlet and outlet of sewage treatment plant Detection items: water temperature, flow rate, pH value, chromaticity, chemical oxygen demand, five-day biochemical oxygen demand, ammonia nitrogen, total phosphorus, total nitrogen, lead, cadmium, chromium, sclera, arsenic, suspended solids, hexavalent chromium, petroleum, animal and vegetable oil, anionic surfactant, fecal coliform, alkyl mercury, free chlorine (free residual chlorine), a total of 22 items Detection frequency: 1. Water temperature, pH value and flow rate are sampled in 24h, measured on site, and measured once every 2h (the average value of data is measured); 2. Chemical oxygen demand powder, suspended solids, five-day biochemical oxygen demand, petroleum, animal and vegetable oil, fecal coliform group are sampled by 24h, once every 2h, and all items are collected and packed separately (the average value of data is determined) 3. The other 13 items were sampled every 2 hours and mixed samples were taken for 24 hours
Department of Ecology and Environment of Qinghai Province
The data set records the comparison of natural and man-made disaster losses in Qinghai Province from 2011 to 2018. The data is collected from the Department of natural resources of Qinghai Province. The data set contains 12 data tables, which are: comparison of natural and man-made disasters in 2011, natural and man-made disasters in 2012, natural and man-made disasters in 2013, and natural and man-made disasters in 2014 The structure of the data table is the same, including two fields: Field 1: disaster causes Field 2: Proportion It is classified according to human factors and natural factors
Department of Natural Resources of Qinghai Province
The data set records the monitoring report of the key industrial enterprises in Qinghai Province (2015-2020). The data is collected from the Department of ecological environment of Qinghai Province. The data set contains 115 data files, including the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the first quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the second quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the third quarter of 2015, and the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the fourth quarter of 2015 Supervision monitoring of Huadian Datong Power Generation Co., Ltd. The key polluting enterprises involved are: Qinghai Huadian Datong Power Generation Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qilian mountain cement, Qinghai ningbei Power Generation Co., Ltd., Qinghai Qiaotou Aluminum Power Co., Ltd., Qinghai new building materials industry and Trade Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qinghai Yihua Chemical Co., Ltd., and Chalco Qinghai Branch Company, Qinghai cement, Baihe aluminum, Huaneng Xining Thermal Power Co., Ltd., Huanghe Xinye, Jihua Jiangyuan, Qinghai Huanghe Jianiang Beer Co., Ltd., Qinghai Jiangcang Energy Development Co., Ltd., Qinghai ningbei Power Generation Co., Ltd., Qinghai Tianlu Dairy Co., Ltd., Qinghai xiaoxiniu Dairy Co., Ltd., Western zinc and Xining Special Steel Co., Ltd Company, Asia silicon (Qinghai) Co., Ltd., Salt Lake Haina, yuntianhuazhong, State Power Investment Group Xi'an solar power generation Co., Ltd., upper Yellow River Hydropower Development Co., Ltd., Qinghai Electronic Materials Industry Development Co., Ltd., Qinghai Yellow River Jianiang Beer Co., Ltd., Qinghai Pharmaceutical Factory Co., Ltd., Qinghai Western Indium Industry Co., Ltd., Qinghai Hongyang Cement Co., Ltd Ltd., Qinghai Jieshen Environmental Energy Industry Co., Ltd., etc. among Monitoring point: flue gas outlet of rotary kiln. Monitoring items: particulate matter, sulfur dioxide, nitrogen oxides, flue gas flow. Monitoring frequency: three samples per production cycle under normal operation condition Contents of daily monitoring: cod, pH, COD, cod
Department of Ecology and Environment of Qinghai Province
The data set records the monitoring report of the key industrial enterprises in Qinghai Province (2015-2020). The data is collected from the Department of ecological environment of Qinghai Province. The data set contains 115 data files, including the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the first quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the second quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the third quarter of 2015, and the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the fourth quarter of 2015 Supervision monitoring of Huadian Datong Power Generation Co., Ltd. The key polluting enterprises involved are: Qinghai Huadian Datong Power Generation Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qilian mountain cement, Qinghai ningbei Power Generation Co., Ltd., Qinghai Qiaotou Aluminum Power Co., Ltd., Qinghai new building materials industry and Trade Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qinghai Yihua Chemical Co., Ltd., and Chalco Qinghai Branch Company, Qinghai cement, Baihe aluminum, Huaneng Xining Thermal Power Co., Ltd., Huanghe Xinye, Jihua Jiangyuan, Qinghai Huanghe Jianiang Beer Co., Ltd., Qinghai Jiangcang Energy Development Co., Ltd., Qinghai ningbei Power Generation Co., Ltd., Qinghai Tianlu Dairy Co., Ltd., Qinghai xiaoxiniu Dairy Co., Ltd., Western zinc and Xining Special Steel Co., Ltd Company, Asia silicon (Qinghai) Co., Ltd., Salt Lake Haina, yuntianhuazhong, State Power Investment Group Xi'an solar power generation Co., Ltd., upper Yellow River Hydropower Development Co., Ltd., Qinghai Electronic Materials Industry Development Co., Ltd., Qinghai Yellow River Jianiang Beer Co., Ltd., Qinghai Pharmaceutical Factory Co., Ltd., Qinghai Western Indium Industry Co., Ltd., Qinghai Hongyang Cement Co., Ltd Ltd., Qinghai Jieshen Environmental Energy Industry Co., Ltd., etc. among Monitoring point: flue gas outlet of rotary kiln. Monitoring items: particulate matter, sulfur dioxide, nitrogen oxides, flue gas flow. Monitoring frequency: three samples per production cycle under normal operation condition Contents of daily monitoring: cod, pH, COD, cod
Department of Ecology and Environment of Qinghai Province
The data set records the monitoring report of the key industrial enterprises in Qinghai Province (2015-2020). The data is collected from the Department of ecological environment of Qinghai Province. The data set contains 115 data files, including the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the first quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the second quarter of 2015, the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the third quarter of 2015, and the supervision monitoring of Qinghai Huadian Datong Power Generation Co., Ltd. in the fourth quarter of 2015 Supervision monitoring of Huadian Datong Power Generation Co., Ltd. The key polluting enterprises involved are: Qinghai Huadian Datong Power Generation Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qilian mountain cement, Qinghai ningbei Power Generation Co., Ltd., Qinghai Qiaotou Aluminum Power Co., Ltd., Qinghai new building materials industry and Trade Co., Ltd., Qinghai Products Industry Investment Co., Ltd., Qinghai Yihua Chemical Co., Ltd., and Chalco Qinghai Branch Company, Qinghai cement, Baihe aluminum, Huaneng Xining Thermal Power Co., Ltd., Huanghe Xinye, Jihua Jiangyuan, Qinghai Huanghe Jianiang Beer Co., Ltd., Qinghai Jiangcang Energy Development Co., Ltd., Qinghai ningbei Power Generation Co., Ltd., Qinghai Tianlu Dairy Co., Ltd., Qinghai xiaoxiniu Dairy Co., Ltd., Western zinc and Xining Special Steel Co., Ltd Company, Asia silicon (Qinghai) Co., Ltd., Salt Lake Haina, yuntianhuazhong, State Power Investment Group Xi'an solar power generation Co., Ltd., upper Yellow River Hydropower Development Co., Ltd., Qinghai Electronic Materials Industry Development Co., Ltd., Qinghai Yellow River Jianiang Beer Co., Ltd., Qinghai Pharmaceutical Factory Co., Ltd., Qinghai Western Indium Industry Co., Ltd., Qinghai Hongyang Cement Co., Ltd Ltd., Qinghai Jieshen Environmental Energy Industry Co., Ltd., etc. among Monitoring point: flue gas outlet of rotary kiln. Monitoring items: particulate matter, sulfur dioxide, nitrogen oxides, flue gas flow. Monitoring frequency: three samples per production cycle under normal operation condition Contents of daily monitoring: cod, pH, COD, cod
Department of Ecology and Environment of Qinghai Province
The data set records the monthly air quality report of Yushu prefecture (2017.7-2019.12). The data is collected from Yushu Ecological Environment Bureau, and the data set contains six files, which are: monitoring data report form of Yushu environmental monitoring station from January to December in 2019, monthly air quality report of Yushu, monthly air quality report of Yushu (July 2017), monthly air quality report of Yushu (August 2017), monthly air quality report of Yushu (September 2017) Yushu Monthly air quality report (October 2017). The data table contains 10 fields: Field 1: City Field 2: site name Field 3: time Field 4: sulfur dioxide μ g / m3 Field 5: PM10 μ g / m3 Field 6: nitrogen dioxide μ g / m3 Field 7: NOx μ g / m3 Field 8: PM2.5 μ g / m3 Field 9: carbon monoxide mg / m3 Field 10: ozone 8h μ g / m3
Ecological Environment Bureau of Yushu Prefecture
This data set records the statistical bulletin of national economic and social development of Yushu prefecture in Qinghai Province in 2019. The data set statistics is from Qinghai Forestry and grass Bureau. The data set contains a word file, which is the statistical bulletin of national economic and social development of Yushu prefecture in 2019. The communique covers the development of agriculture and animal husbandry, investment in fixed assets, domestic trade and tourism, social security, finance and finance, education and postal services, population and people's living conditions, etc. The data of 2019 in this bulletin are all preliminary statistical data; The GDP, the added value of various industries and the per capita GDP are calculated according to the "Regulations on the division of three industries" formulated by the National Bureau of statistics in 2012, the absolute number is calculated according to the current price, and the growth rate is calculated according to the comparable price; the statistical caliber of fixed assets investment is the fixed assets investment project with a planned investment of 5 million yuan or more.
Qinghai Provincial Bureau of Statistics