The data set contains the mass concentration of PM2.5 (particulate matter less than 2.5 μ m) in the atmosphere of Shiquanhe national reference climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m). The measuring instrument is RP 1400A vibrating balance micro balance (TEOM). The observation period is from July 8, 2019 to August 2, 2019, and the time resolution is 1 minute. The data is stored in TXT format.
HUANG Jianping ZHANG lei TIAN Pengfei SHI Jinsen
The data set is the observation of Shiquanhe town in Ali area. The altitude, longitude and latitude of Ali area are 32.50, 80.10 and 4360m respectively. The mass concentration of black carbon in the atmosphere was continuously observed. Ae31 (aethalometer) is used as the measuring instrument. Its observation period is from 12:00:00 on July 13, 2019 to 21:35:00, July 17, 2020. The time resolution is 5 minutes. There is data missing due to instrument failure. The data file includes instrument information, flow parameter setting (LPM) and specific observed concentration. Funded project: Research Fund for the second comprehensive investigation of Qinghai Tibet Plateau, 2019qzkk0602.
ZHU Chongshu HU Tafeng WU Feng WANG Qiyuan ZHANG Ningning DAI Wenting
The data set contains the scattering and absorption coefficients of PM2.5 (particles with particle size less than 2.5 μ m) in the atmosphere of Shiquanhe national reference climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m) in Ali Region. The measurement instrument is photoacoustic extinctiomer (pax), the observation period is from July 13, 2019 to August 2, 2019, and the time resolution is 1 minute. The data set can be used to study the scattering and absorption characteristics of PM2.5 over the Tibetan Plateau.
HUANG Jianping ZHANG lei TIAN Pengfei SHI Jinsen
The data set contains the scattering coefficients of PM2.5 (particles less than 2.5 μ m) at 450nm, 550nm and 700nm at Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m). The measuring instrument is tsi-3563 integral turbidimeter, the observation period is from July 8, 2019 to August 2, 2019, and the time resolution is 10 seconds. It can be used to study the dependence of PM2.5 scattering coefficient on the wavelength of incident light, which can reflect the particle size distribution of PM2.5.
HUANG Jianping ZHANG lei TIAN Pengfei SHI Jinsen
The data set contains the off-line sampling data of medium flow aerosols from Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, altitude 4278.6 m) in Ali Region. The measuring instrument is Laoying 2030 medium flow sampler. The quartz filter membrane samples of PM2.5, PM10 and TSP with a diameter of 90 mm are collected. The samples will be used for chemical components such as elemental carbon, organic carbon, water-soluble ions and metal elements analysis. The sampling period is from July 7, 2019 to August 2, 2019, starting at 09:00 every day, with a total of 81 samples for 23 hours each time. The data is stored in Excel file.
HUANG Jianping ZHANG lei TIAN Pengfei SHI Jinsen
The data set contains the number concentration and size distribution spectrum of particles in the atmosphere of Shiquanhe national climate station (32 ° 30'n, 80 ° 05'e, elevation 4278.6 m) in Ali Region. The instrument is tsi-3321 aerodynamic particle size spectrometer (APS), with 52 particle size channels. The observation period is from July 7, 2019 to August 2, 2019, and the time resolution is 5 minutes. The size distribution spectra of aerosol volume concentration and mass concentration can be obtained by using the data, aerosol spherical hypothesis and aerosol density, and then the characteristics of aerosol particle size distribution in the northwest of Qinghai Tibet Plateau can be studied.
HUANG Jianping ZHANG lei TIAN Pengfei SHI Jinsen
There are two types of aerosol data in the Tibetan Plateau. Aerosol type data products are the results of aerosol type data fusion by using Meera 2 assimilation data and active satellite CALIPSO products through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of the algorithm is to judge the CALIPSO aerosol type. According to CALIPSO aerosol types and quality control, and referring to merra 2 aerosol types, the final aerosol type data (12 kinds) and quality control results were obtained. Considering the vertical and spatial distribution of aerosols, it has high spatial resolution (0.625 ° × 0.5 °) and temporal resolution (month). Aerosol optical depth (AOD) is a visible band remote sensing inversion method developed by ourselves, combined with merra-2 model data and NASA's official product mod04. The data coverage time is from 2000 to 2019, with daily temporal resolution and spatial resolution of 0.1 degree. The retrieval method mainly uses the self-developed APRs algorithm to retrieve the aerosol optical depth over the ice and snow. The algorithm takes into account the BRDF characteristics of the ice and snow surface, and is suitable for the inversion of aerosol optical thickness on the ice and snow. The results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the polar AOD.
GUANG Jie ZHAO Chuanfeng
As the "water tower" of Asia, the Qinghai Tibet Plateau provides water resources for the main rivers in Asia. BC aerosol emitted from biomass and fossil fuel combustion has a strong absorption effect on radiation, and has an important impact on the energy budget and distribution of the earth system. It is an important influence factor of climate and environmental change. The black carbon aerosols emitted from the surrounding areas of the Qinghai Tibet Plateau can be transported to the interior of the plateau through the atmospheric circulation, and settle on the surface of snow and ice, which has an important impact on precipitation and glacier mass balance. Black carbon meters were set up at five stations on the Qinghai Tibet Plateau, and aethalometer was used to measure the black carbon content in the atmosphere online. The time resolution of the data was day by day. This data is an update of the previously released "observational data of black carbon content in the atmosphere of the Qinghai Tibet Plateau (2018)". The information of the five sites is as follows: Namco: 30 ° 46'N, 90 ° 59'e, 4730 ma.s.l Mt. Everest: 28.21 ° n, 86.56 ° e, 4276 ma. S.l Southeast Tibet: 29 ° 46'N, 94 ° 44'e, 3230 ma.s.l Ali station: 33.39 ° n, 79.70 ° e, 4270 ma. S.l Mostag: 38 ° 24'n, 75 ° 02'e, 3650 ma.s.l
WANG Mo
This data set includes PM2.5 mass concentrations (unit: μ g / m3) of atmospheric aerosol particles from South-East Tibetan plateau Station, Ngari Station, Muztagh Ata Station, Qomolangma station and Namco station. Aerosol PM2.5 fine particles refer to the particles with aerodynamic equivalent diameter less than or equal to 2.5 μ m in ambient air. It can be suspended in the air for a long time, which has an important impact on air quality and visibility. The higher its concentration in the air, the more serious the air pollution. The concentration characteristic data of PM2.5 were calculated every 5 The analysis of aerosol mass concentration in different time scales, such as hour, day and night, season and inter annual, can be achieved by obtaining a group of data frequency for output. This provides important data support for the analysis of aerosol mass concentration changes in different time scales and its influencing factors in different locations of the Qinghai Tibet Plateau, as well as the evaluation of local air quality. The data is an update of the published data set of aerosol PM2.5 concentration at different stations on the Qinghai Tibet Plateau (2018).
WU Guangjian
Airborne pollen is mainly produced and disseminated during the process of plant flowering, controlled by plant phenology and climatic conditions. As an important bioindicator of plant behavior, airborne pollen can supply information about reproductive phenology, climate and atmospheric circulations. From 2011 to 2013, airborne pollen samples were collected using a volumetric Burkard pollen trap at the Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS, 28.21°N, 86.56°E; 4276 m a.s.l.), on the northern slope of the Himalayas. The sampler is a volumetric air-suction device capable of continuously gathering pollen and spore particles. Air is drawn in at a speed of 10 l/min, and airborne particles are deposited on a sticky tape mounted on a drum that makes one complete rotation per week. The tape is changed weekly after a complete rotation. Then, the tape is removed and cut into seven pieces, with each piece representing one day of sampling. The pieces are mounted on slides using glycerin and safranin. Identification and counting of pollen grains were performed under an Olympus BX41 microscope at 400× magnification; all pollen grains on each slide were counted . Pollen concentration was expressed as the daily pollen grains per cubic meter of air using a constant air intake speed of 10 l/min. The pollen concentration and percentage of each pollen taxon in each year were calculated. The pollen sampling and lab process were followed the standard methods to ensure the authenticity and reliability of the data. The pollen data can provides insights into vegetation response to climate change and has significance for interpreting fossil pollen records.
LÜ Xinmiao
This dataset includes the monthly AOD datasets from MODIS Aqua of the central and western part of China. By applying the Deep Blue (DB) and Dark Target (DT) algorithms over land, and the DT over-water algorithm, three types of AOD products at 550 nm are relseaed (e.g. Dark Target, Deep Blue and Merged AOD). In this project, monthly AOD products from July 2003 to November 2018 are collected, which can provide the informations of AOD and air pollutions over the central and western part of China.
XIA Xiangao SONG Zijue
Black carbon is an important light absorbing substance, which has an important impact on climate change. This data set contains the data of black carbon concentration and sedimentation flux in the core of six lakes (gun Yong lake, Tanggula lake, linggecuo, Ranwu lake, gokyo, gosainkunda) on the Qinghai Tibet Plateau and the south slope of the Himalayas. The carbon concentration of Huxin black was determined by digestion filtration thermoluminescence method. This dataset is an excel file, which can be opened directly by using Excel. This data set is helpful to study the history of atmospheric black carbon deposition in the Qinghai Tibet Plateau and its surrounding areas and to further analyze the sources of atmospheric black carbon. It can be used as the basic data for the study of atmospheric black carbon transport and climate effect assessment.
KANG Shichang
This dataset includes the concentrations and spatial pattern of organic carbon (OC) and Elemental carbon (EC) in the carbonaceous aerosol (CA) of the Tibetan Plateau and surroundings. OC and EC were measured by Desert Research Institute Model 2001 Thermal/Optical Carbon Analyzer. The limit of detection (LOD) for OC and EC were 0.43 and 0.12 ug/cm2, respectively. In addition, MAC was also calculated for assessing the effect of EC. This dataset will provide the informations of CA contamination and background values over the Tibetan Plateau and surroundings.
CHEN Pengfei
The three pole aerosol type data product is an aerosol type result obtained by integrating the data assimilation of Meera 2 and the active satellite CALIPSO product through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of this algorithm is to judge the type of CALIPSO aerosol. In the process of aerosol type data fusion, according to the type and quality control of CALIPSO aerosol, and referring to the type of merra 2 aerosol, the final aerosol type data (12 kinds in total) and quality control results in the three pole area are obtained. The data product fully considers the vertical distribution and spatial distribution of aerosols, with high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
The "poles AOD Collection 1.0" aerosol optical thickness (AOD) data set adopts the self-developed visible band remote sensing inversion method, combined with the merra-2 model data and the official NASA product mod04. The data covers from 2000 to 2019, with the time resolution of day by day, covering the "three poles" (Antarctic, Arctic and Qinghai Tibet Plateau) area, and the spatial resolution of 0.1. Degree. The inversion method mainly uses the self-developed APRs algorithm to invert the aerosol optical thickness over ice and snow. The algorithm considers the BRDF characteristics of ice and snow surface, and is suitable for the inversion of aerosol optical thickness over ice and snow. The experimental results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the aerosol optical thickness in the polar region.
GUANG Jie
The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
CONG Zhiyuan
The total solar radiation and the total radiation of absorption and scattering material attenuation are measured by the international general solar radiation meter (li200sz, li-cor, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100nm. The unit of measurement is w / m2, and the typical error is ± 3% (incidence angle is within 60 °) under natural lighting. The data of sodankyl ä station in the Arctic comes from cooperation with the site and website download. The coverage time of sodankyl ä station in the Arctic is updated to 2018.
BAI Jianhui
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2016 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format.
ZHAO Chuanfeng
As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. Five Aethalometers are used to mornitoring black carbon concentration at 5 stations on the Tibetan Plateau. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.
WANG Mo
This data set includes the mass concentration of atmospheric particles with the aerodynamic diameter less than 2.5 micron meters (PM2.5, unit: μg/m3), and the meteorological data such as temperature (Celsius degree), humidity (%) air pressure (hPa). PM2.5 aerosol particles can be floated in the atmosphere for a long time and can be transported to long range. It has important impact on the air quality and visibility, and is a essential index of air quality. The higher its concentration is, the more serious the air pollution. The PM2.5 data is produced at the interval of 5 min, which enable the key data for analysis on the spatiotemporal characteristics of atmospheric particles on the Tibetan Plateau on different tiem scale, such as hourly, daily, monthly and yearly.
WU Guangjian