This dataset is the high-resolution downscaled results of three global circulation models (CCSM4, HadGEM2-ES, and MPI-ESM-MR) from CMIP5. The regional climate model applied is the WRF model. The domain of this dataset covers the five countries of Central Asia. Its horizontal resolution is 9km. The future (reference) period is 2031-2050 (1986-2005), which includes the 10 years under 1.5-2℃ global warming. The carbon emission scenario is RCP4.5. The variances are annual mean temperature at 2m and precipitation (cumulus and grid-scale precipitation). This dataset can be used to project the climate in Central Asia.
QIU Yuan
Gwadar deepwater port is located in the south of Gwadar city in the southwest of Balochistan province, Pakistan. It is 460km away from Karachi in the East and 120km away from the Pakistan Iran border in the West. It is adjacent to the Arabian Sea in the Indian Ocean in the South and the Strait of Hormuz and the Red Sea in the West. It is a port with a strategic position far away from Muscat, the capital of Oman. This data is the measured meteorological data of Gwadar Port meteorological station (62.329494e, 25.233308n). The data time range is 2014-2015, and the data time resolution is one day.
WU Hua
Coupled Model Intercomparison Project Phase 5 (CMIP5) provides a multiple climate model environment, which can be used to predict the future climate change in the key nodes in the Belts and Road to deal with the environmental and climate problems. Key nodes in the Belt and Road are taken as the study regions of this dataset. The ability of 43 climate models in CMIP5 to predict the future climate change in the study regions was assessed and the optimal models under different scenarios were selected according to the RMSE between the prediction results and real observations. This dataset is composed of the prediciton results of precipitation and near-surface air temperature between 2006 and 2065 using the optimal models in monthly temporal frequncy. The spatial resolution of the dataset has been downscaled to 10 km using statistical downscaling method. Data of each period has three bands, namely maximum near-surface air temperature, minimum near-surface air temperature and precipitation. In this data set, the unit of precipitation is kg / (m ^ 2 * s), and the unit of near-surface air temperature is K. This dataset provides data basis for solving environmental and climate problems of the key nodes in the Belts and Road.
LI Xinyan LING Feng
1) Data content (including elements and significance): the data includes daily values of temperature (℃), precipitation (mm), relative humidity (%) and wind speed (M / s) 2) Data source and processing method; air temperature, relative humidity and wind speed are daily mean values, precipitation is daily cumulative value; data collection location is 29 ° 39 ′ 25.2 ″ n; 94 ° 42 ′ 25.62 ″ E; 4390m; underlying surface is natural grassland; collector model Campbell Co CR1000, collection time: 10 minutes. Digital automatic data acquisition. The temperature and relative humidity instrument probe is hmp155a; the wind speed sensor is 05103; the precipitation is te525mm; 3) Data quality description; the original data of temperature, relative humidity and wind speed are the average value of 10 minutes, and the precipitation is the cumulative value of 10 minutes; the daily average temperature, relative humidity, precipitation and wind speed are obtained by arithmetic average or summation. Due to the limitation of sensors, there may be some errors in winter precipitation. 4) In addition, it is convenient for scientists to update the atmospheric data in the future. This data is updated from time to time every year.
LUO Lun
The China-Mongolia-Russia Economic Corridor is confronted with security problems related with global warming, mostly including the increasingly serious of degradation of permafrost and land desertification. On one hand, frozen soil degradation has caused frequent disasters such as debris flow, flood, ice and snow damage along the China-Mongolia-Russia transportation and pipeline, which will cause water and soil erosion followed by exposed pipes in frozen soil, in particular in summer. On the other hand, desertification will drive the ecological environment more vulnerable with the compound hazards of soil erosion and sandstorms occurring frequently. Therefore, this dataset will hopefully provide basic climate data for the research on the climate change and its impacts on permafrost and desertification for the China-Mongolia-Russia Economic Corridor. The original data is extracted from ERA5- Land surface climate reanalysis data (ERA5 – Land) (source: https://cds.climate.copernicus.eu). We adopted the inverse distance weight (IDW) method to interpolate the original data with the spatial resolution of 10 km. Based on this dataset, the spatial and temporal distribution pattern of climatic factors are outlined over the past 40 years for the corridor.
ZHANG Xueqin
Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM3M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours, daily and yearly scales.
PAN Xiaoduo ZHANG Lei
Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.
GAO Jing
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.
LUO Lun
This data set is the data set of climate elements in Hoh Xil area of Qinghai Province, covering the data of 14 observation stations, recording the climate observation data in 1990 in detail. Hoh Xil area in Qinghai Province has a high terrain with an average altitude of over 5000m. The climate is cold, the air is thin and the natural environment is bad. The vast area is still no man's land, known as "forbidden zone for human beings". Due to less interference from human activities, most of the area still maintains its original natural state. Its special geographical location, crustal structure and natural environment, as well as the unique composition of the biological flora, have been the focus of domestic surgical circles. The original data of the data set is digitized from the book "natural environment of Hoh Xil, Qinghai Province". The climate observation data include solar radiation, temperature, precipitation, air pressure, wind speed, etc. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.
LI Bingyuan
When using the 3DVAR for data assimilation, it is necessary to use error covariance to determine the contribution of background field and observation. Among them, the background field error covariance depends not only on the atmospheric prediction model (such as resolution, parameterization scheme, etc.), but also on the simulation area. Based on the Weather Forecast and Research (WRF) model, this data is estimated by NMC method through the simulation of the Central Asian Great Lakes region (27 km horizontal resolution) in 2017. The variables include stream function, velocity potential function, temperature, relative humidity and surface pressure. This data can be applied to the study and application of data assimilation in the Central Asia Great Lakes region based on WRF model.
YAO Yao
1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.
ZHU Liping PENG Ping
(1) This data set is the carbon flux data set of Shenzha alpine wetland from 2016 to 2019, including air temperature, soil temperature, precipitation, ecosystem productivity and other parameters. (2) The data set is based on the field measured data of vorticity, and adopts the internationally recognized standard processing method of vorticity related data. The basic process includes: outlier elimination coordinate rotation WPL correction storage item calculation precipitation synchronization data elimination threshold elimination outlier elimination U * correction missing data interpolation flux decomposition and statistics. This data set also contains the model simulation data calibrated based on the vorticity correlation data set. (3) the data set has been under data quality control, and the data missing rate is 37.3%, and the missing data has been supplemented by interpolation. (4) The data set has scientific value for understanding carbon sink function of alpine wetland, and can also be used for correction and verification of mechanism model.
WEI Da
Airborne pollen is mainly produced and disseminated during the process of plant flowering, controlled by plant phenology and climatic conditions. As an important bioindicator of plant behavior, airborne pollen can supply information about reproductive phenology, climate and atmospheric circulations. From 2011 to 2013, airborne pollen samples were collected using a volumetric Burkard pollen trap at the Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS, 28.21°N, 86.56°E; 4276 m a.s.l.), on the northern slope of the Himalayas. The sampler is a volumetric air-suction device capable of continuously gathering pollen and spore particles. Air is drawn in at a speed of 10 l/min, and airborne particles are deposited on a sticky tape mounted on a drum that makes one complete rotation per week. The tape is changed weekly after a complete rotation. Then, the tape is removed and cut into seven pieces, with each piece representing one day of sampling. The pieces are mounted on slides using glycerin and safranin. Identification and counting of pollen grains were performed under an Olympus BX41 microscope at 400× magnification; all pollen grains on each slide were counted . Pollen concentration was expressed as the daily pollen grains per cubic meter of air using a constant air intake speed of 10 l/min. The pollen concentration and percentage of each pollen taxon in each year were calculated. The pollen sampling and lab process were followed the standard methods to ensure the authenticity and reliability of the data. The pollen data can provides insights into vegetation response to climate change and has significance for interpreting fossil pollen records.
LÜ Xinmiao
The daily values of air temperature, air pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapor pressure, etc. observed by the comprehensive observation and research station of the west wind belt of mostag.
Baiqing XU
This data set includes the daily average values of air temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, p2.5 concentration, short wave radiation, etc. observed by the comprehensive observation and research station of atmosphere and environment of Everest from 2017 to 2018.
MA Yaoming
This data set includes the daily average data of air temperature, relative humidity, precipitation, wind speed, wind direction, net radiation, air pressure, etc. of Southeast Tibet station from January 1, 2017 to December 31, 2018.
Lun LUO Liping ZHU
1) The data set driven by the surface meteorological elements of the surface meteorological observation data product (2017-2018) of the Qinghai Tibet Plateau includes four elements: near surface temperature, surface precipitation rate, short wave radiation and long wave radiation. 2) The data set is based on the existing Princeton reanalysis data, GLDAS data, gewex-srb radiation data and TRMM Precipitation Data in the world as the background field, and integrates the conventional meteorological observation data of China Meteorological Administration, and is formed by spatial interpolation. 3) The data is TIFF format, the temporal resolution is daily value, and the spatial resolution is 0.1 °. 4) It is convenient for researchers and students who do not use such assimilation data in NC format. Based on the long-term observation data of each field station in the alpine network and overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; the inversion of data products such as meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacial and frozen soil changes are completed through enhanced observation and sample site verification in key regions; based on the IOT Network technology, the development and establishment of multi station network meteorological, hydrological, ecological data management platform, to achieve real-time access to network data and remote control and sharing.
ZHU Liping PENG Ping
Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019.
PAN Xiaoduo
This dataset includes the monthly minimum temperature data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2017. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 ℃. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea.
PENG Shouzhang