The data set records the information disclosure form of county-level centralized drinking water quality monitoring (2019-2020) in Haixi Prefecture. The data is collected from the data set of Qinghai Provincial Department of ecological environment, including nine data tables: information disclosure form of county-level centralized drinking water quality monitoring in the first quarter of 2019 in Haixi Prefecture, and information disclosure form of county-level centralized drinking water quality monitoring in the second quarter of 2019 in Haixi Prefecture Information disclosure form of quality monitoring, information disclosure form of centralized drinking water quality monitoring at county level in the third quarter of 2019, information disclosure form of centralized drinking water quality monitoring at county level in the fourth quarter of 2019, information disclosure form of centralized drinking water quality monitoring at county level in the first half of 2019, and information disclosure form of centralized drinking water quality monitoring at county level in the second half of 2019 In the first quarter of 2020, the county-level surface water centralized drinking water source water quality information disclosure form, the county-level surface water centralized drinking water source water quality information disclosure form in the second quarter of 2020, and the county-level groundwater centralized drinking water source water quality information disclosure form in the first half of 2020 The table structure is the same. There are 11 fields in each data table Field 1: serial number Field 2: name of water source Field 3: water level Field 4: water source type Field 5: water quality category requirements Field 6: monitoring unit Field 7: monitoring factors Field 8: monitoring frequency Field 9: is it up to standard Field 10: over standard factor Field 11: remarks
Department of Ecology and Environment of Qinghai Province
The data set records the monitoring status of centralized drinking water quality in Haixi Prefecture of Qinghai Province from January 2019 to June 2020. The data were collected from the ecological environment bureau of Haixi Prefecture. The data set includes six data tables, which are: information disclosure data of centralized drinking water quality monitoring in Haixi Prefecture in the first quarter of 2019, information disclosure data of centralized drinking water quality monitoring in Haixi Prefecture in the second quarter of 2019, information disclosure data of centralized drinking water quality monitoring in Haixi Prefecture in the third quarter of 2019, and information disclosure data of centralized drinking water quality monitoring in Haixi Prefecture in the second quarter of 2019 The structure of information disclosure data and data table is the same for the fourth quarter of 2020, the first quarter of 2020 and the second quarter of 2020. Each data table has a total of 11 fields, such as the information disclosure table of prefecture level centralized drinking water quality monitoring in the second quarter of 2020 in Haixi prefecture (only 6 fields are listed) Field 1: serial number Field 2: name of water source Field 3: water level Field 4: water source type Field 5: water quality category requirements Field 6: testing unit Field 7: monitoring items Field 8: monitoring frequency Field 9: exceedance factor Field 10: is it up to standard Field 11: remarks
Ecological Environment Bureau of Haixi Prefecture Qinghai Province
The data set records the dynamic statistical data of groundwater level in the monitoring area of Golmud City, Qinghai Province from 2012 to 2018, and the statistics are classified according to the year and quantity. The data were collected from the official website of the Department of natural resources of Qinghai Province. The data set contains seven data tables, which are the dynamic statistics of groundwater level in Golmud monitoring area in 2012, 2013, 2014, 2015, 2016, 2017 and 2018, with the same structure. For example, the data table in 2012 has five fields: Field 1: year Field 2: Potassium view5 Field 3: View 4 Field 4: View 39 Field 5: Potassium view 1
ZHAO Hu
1. The data content is the monthly groundwater level data measured between the tail of chengdina River, Kuqa Weigan River and Kashgar river of Tarim River, which is required to be the water level data of 30 wells, but the number of wells in this data reaches 44; 2. The data is translated into CSV through hobo interpretation, and the single bit time-lapse value is found through MATLAB, and then extracted and calculated through Excel screening, that is, through the interpretation of original data, through the communication Out of date and daily data, calculated monthly data; 3. Data is measured data, 2 decimal places are reserved, unit is meter, data is accurate; 4. Data can be applied to scientific research and develop groundwater level data for local health.
CHEN Yaning HAO Xingming
The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.
DONG Lingxiao
The data set integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively.The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology research in the mountain cryosphere region
WANG Xin GUO Xiaoyu YANG Chengde LIU Qionghuan WEI Junfeng ZHANG Yong LIU Shiyin ZHANG Yanlin JIANG Zongli TANG Zhiguang
Firstly, country-wise sectorial water withdrawal data are collected from FAO AQUASTAT database, Peter Gleick’s water use data, country statistics and literatures. In order to get consistent data, all data are unified to 2015 due to inconsistent times. For the data of year 2013-2017 close to 2015, the values of these years are directly used as water withdrawals of 2015. For the others, GDP, population, temperature, precipitation, irrigation area, carbon dioxide emission, nighttime light index, coal production, urban population corresponding to the water use data of different years in each country are collected, the panel data regression model of fixed effect and random effect between industrial water, agricultural water and domestic water and these factors are established, respectively. Sectorial water withdrawals in 2015 are estimated for every country.
JIA Shaofeng
The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.
MA Yuan LI Hongyi
This data includes future population and GDP estimates based on the SSP2 scenario at the Mekong basin grid scale. The data comes from the global population projection data with a spatial resolution of 5 minutes (about 10km) and the GDP projection data with a spatial resolution of 0.5 degrees (about 50km) provided by the ISIMIP. The method of spatial interpolation is used to get 0.25-degree population projection data from 5-min population projection, and 0.5-degree GDP projection data is downscaled to obtain the 0.25 degree GDP data. The data provided by ISIMIP has passed the data with good quality control, and has not been further verified after data interpolation. The data can be used for the socio-economic impact assessment of climate change and extreme climate events in the Mekong River Basin.
LIU Xingcai
This data set is the water resources data of the Qinghai Tibet Plateau from 1990 to 2010, which is the sum of renewable surface and groundwater resources. The data is in vector format and the spatial resolution is in the scale of prefecture level administrative units. The data is obtained by checking the results of VIC (variable injection capacity) hydrological model. The simulated water resources are the sum of the surface runoff and underground runoff in the output results of hydrological simulation. The simulation results are verified by comparing with the runoff data of the measured stations. According to the statistics of water resources at the provincial level in China water resources bulletin, a correction coefficient α is introduced at the provincial level, so that the product of water resources and α in the hydrological model simulation province is equal to the statistics of water resources. Then the amount of water resources in the administrative unit is the product of the total amount of water resources and α.
DU Yunyan YI Jiawei
The main idea of water resources estimation is to establish a machine learning model using runoff coefficient and runoff impact factors (climate, topography, land use, soil), and then convert the estimated runoff coefficient to runoff depth, and then converted to water resources volumn. Based on global public open accessed data, establish the runoff coefficient topography, climate, soil, and land use, and the machine learning model for. Long-term annual runoff coefficient in the Belt and Road region was estimated and country level water resources was derived from precipitation of 2015 , The area of the country is estimated by the amount of water resources in the countries along the Belt and Road. A high-resolution runoff coefficient distribution map of the Belt and Road region was generated, which provided basic data support for water resources assessment and cross-border water distribution in the Belt and Road region.
JIA Shaofeng
The data are Intensity of water resources utilization in the area along the Belt and Road in 2015. This data reflects the overall situation and water use of water resources in a region. Water is an important factor restricting economic and social development, especially in areas with water shortage. Water utilization is related to people's survival and development. The data comes from the food and agriculture organization of the United Nations. The data set describe the total water consumption, development utilization rate and water proportion of each part of the world. It directly reflects the water resources content and demand of each region, and indirectly reflects the regional economic development. The utilization degree of water resources can show the development focus of the country and region, and the utilization rate of development also reflects the degree of social development to a certain extent. "the Belt and Road" regions are closely linked today, the situation of water resources measures the economic development status, but also reflects the economic constraints.
Liu Zhenwei
The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.
DONG Qianjin DONG Lingxiao
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were forecast. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng ZHONG Fanglei
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng ZHONG Fanglei
By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng ZHONG Fanglei
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated and used to evaluate the vulnerability of the water resources system of the basin. The IPAT equation was used to set a future water resource demand scenario to establish the scenario by setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng ZHONG Fanglei
According to the principle of optimization of water diversion scheme and the economic, social and ecological development status of Heihe River Basin, the following three optimization schemes of water diversion scheme are proposed. In Scheme 1, the water consumption in the middle reaches is 630 million m3 in each coming year. In Scheme 2, the water consumption in the middle reaches is 180 million m3 and 60 million m3 in 90% and 75% coming years respectively. In Scheme 3, when the water consumption in Yingluo Gorge is more than 1.9 billion m3, the water consumption in excess of 1.9 billion m3 is distributed by 40% in the middle reaches and 60% in the lower reaches. At the same time, in order to maintain the annual average inflow of 1.58 billion m3 from Yingluo Gorge, 950 million m3 from Zhengyi Gorge, and when the inflow of Yingluo Gorge is less than 1.29 billion m3, 60% of the inflow of less than 1.29 billion m3 will be distributed in the middle reaches and 40% in the lower reaches.
JIANG Xiaohui
The data of water use scenario analysis in heihe river basin is mainly used in water right management model. Space scope: sunan county, ganzhou district, minle county, linze county, gaotai county, shandan county, jinta county, ejin na, suzhou district, jiayuguan; Time frames: 2020 and 2030 Data content: forecast water consumption (tons) Number of transfers: 9kb
WANG Zhongjing ZHENG Hang
Water demand in the middle and lower reaches of Heihe River (mainly including water demand for living, livestock, industry, agriculture, tertiary industry, artificial forest and grass ecology in the middle reaches of Heihe River in current year, 2020 and 2030; water demand for living, industry, tertiary industry and ecology in Ejina Banner in the middle reaches of Heihe River in current year, 2020 and 2030)
JIANG Xiaohui