1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the MD values were less than 10 m. The maximum error of the GPR-measured data was 230.2 ± 5.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.
ZHANG Yinsheng
This dataset includes annual mosaics of Antarctic ice velocity derived from Landsat 8 images between December, 2013 and April, 2019, which was updated in 2020 in order to produce multi-year annual ice velocity mosaics and improve the quality of products including non-local means (NLM) filter, and absolute calibration using rock outcrops data. The resulting Version 2 of the mosaics offer reduced local errors, improved spatial resolution as described in the README file.
SHEN Qiang
High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.
TANG Zhiguang DENG Gang WANG Xiaoru
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of garongla glacier by the comprehensive observation and research station of alpine environment in Southeast Tibet, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2) and air pressure (kPa). In the original data, an average value is recorded every 30 minutes before October 2018, and then an average value is recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Due to the thick snow cover and low temperature on the ice surface in winter and spring, some parameter data periods are missing, which can be used by scientific researchers studying climate, glacier and hydrology.
LUO Lun
The data set contains the stable oxygen isotope data of ice core from 1864 to 2006. The ice core was obtained from Noijinkansang glacier in the south of Southern Tibetan Plateau, with a length of 55.1 meters. Oxygen isotopes were measured using a MAT-253 mass spectrometer (with an analytical precision of 0.05 ‰) at the Key Laboratory of CAS for Tibetan Environment and Land Surface Processes, China. Data collection location: Noijinkansang glacier (90.2 ° e, 29.04 ° n, altitude: 5950 m)
GAO Jing
This data set is the distribution data of permafrost and underground ice in Qilian Mountains. Based on the existing borehole data, combined with the Quaternary sedimentary type distribution data and land use data in Qilian mountain area, this paper estimates the distribution of underground ice from permafrost upper limit to 10 m depth underground. In this data set, 374 boreholes in Qilian mountain area are used, and the indication function of Quaternary sedimentary type to underground ice storage is considered, so it has certain reliability. This data has a certain scientific value for the study of permafrost and water resources in Qilian Mountains. In addition, it has a certain promotion value for the estimation of underground ice reserves in the whole Qinghai Tibet Plateau.
SHENG Yu
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
Bob Su WEN Jun
This data includes the ground temperature data of the source area of the Yellow River The main model of Permafrost Distribution in the source area of the Yellow River is constructed based on the permafrost boreholes and the measured ground temperature data. The temperature value of the permafrost on the sunny slope terrain is adjusted separately, and the fine-tuning model under the sunny slope terrain is established. The simulation results of the boreholes participating in the model construction are compared with the measured results, and the results show that the model is involved in the construction of the model The results show that the model is feasible to simulate the spatial distribution pattern of permafrost annual average ground temperature in the source area of the Yellow River
SHENG Yu LI Jing
Based on Landsat data (kh-9 data in 1976 as auxiliary data), glacial lake data of nearly 40 years (1970s-2018) in the western Nyainqentanglha range were obtained by manual digitization and visual interpretation. The variation characteristics of glacial lake over 0.0036 square kilometers in terms of type, size, elevation and watershed were analyzed in detail. The results show that, between 1976 and 2018, the number of glacial lakes increased by 56% from 192 to 299 and their total area increased by 35% from 6.75 ± 0.13 square kilometers to 9.12 ± 0.13 square kilometers ; the type of glacial lake is changing obviously; the smaller glacial lake is changing faster; the expansion of glacial lake is developing to higher altitude.
LUO Wei ZHANG Guoqing
The distribution data of permafrost in the source area of the Yellow River is established based on the annual average ground temperature model of permafrost in the source area of the Yellow River. The annual average ground temperature of 0 ℃ is taken as the standard and boundary for dividing seasonal frozen soil and permafrost. Compared with the available permafrost maps of the source region of the Yellow River (1:3 million) and the permafrost background survey project of the Qinghai Tibet Plateau (1:1 million), the data set is based on the measured data of the Yellow River source area, which has higher consistency with the measured data, and the simulation accuracy of the permafrost distribution map is the highest. The data set can be used to verify the distribution of permafrost in the source area of the Yellow River, as well as to study the frozen soil environment.
SHENG Yu LI Jing
This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
DING Jinzhi WANG Tao
The ages of glacial traces of the last glacial maximum, Holocene and little ice age in the Westerlies and monsoon areas were determined by Cosmogenic Nuclide (10Be and 26Al) exposure dating method to determine the absolute age sequence of glacial advance and retreat. The distribution of glacial remains is investigated in the field, the location of moraine ridge is determined, and the geomorphic characteristics of moraine ridge are measured. According to the geomorphic location and weathering degree of glacial remains, the relationship between the new and the old is determined, and the moraine ridge of the last glacial maximum is preliminarily determined. The exposed age samples of glacial boulders on each row of moraine ridges were collected from the ridge upstream. This data includes the range of glacier advance and retreat in Karakoram area during climate transition period based on 10Be exposure age method.
XU Xiangke
Among many indicators reflecting climate and environmental change, the stable isotope index of ice core is an indispensable parameter in the study of ice core record, and is one of the most reliable and effective ways to recover the past climate change. Ice core accumulation is a direct record of precipitation on glaciers, and high resolution ice core records ensure the continuity of precipitation records. Therefore, ice core records provide an effective means to recover precipitation changes. The isotope and accumulation of ice cores drilled from the Qinghai Tibet Plateau can be used to reconstruct the changes of temperature and precipitation, which is a good record of climate and environment. This data set provides stable isotope records of hushe ice core in Karakoram area and provides data support for the study of climate change in Qinghai Tibet Plateau.
XU Baiqing WANG Mo
The data includes the distribution data of underground ice in permafrost layer in the source area of the Yellow River. Based on the field data of 105 boreholes, such as landform and genetic type, permafrost temperature distribution, lithology composition and water content, the permafrost layer in the source area of the Yellow River is estimated to be 3.0-10.0 M The results show that the average ice content per cubic meter of soil in the source area of the Yellow River is close to the estimated value of underground ice storage in permafrost regions of the Qinghai Tibet Plateau calculated by Zhao Lin et al. The data is also of great significance for frozen soil prediction, evaluation of landscape stability in permafrost regions, and regional changes of topography, vegetation and hydrology caused by environmental changes.
SHENG Yu WANG Shengting
The coverage time of glacier runoff data set in the five major river source areas of the Qinghai Tibet Plateau is from 1971 to 2015, and the time resolution is year by year, covering the source areas of five major rivers (Yellow River source, Yangtze River source, Lancang River source, Nu River source, Yarlung Zangbo River source). The data is based on multi-source remote sensing and measured data. The glacier runoff data is simulated by using the daily scale meteorological data of five major river source areas and their surrounding meteorological stations, the global vegetation products of umd-1km, the igbp-dis soil database, the first and second glacier catalogue data, and the distributed hydrological model vic-cas coupled with the glacier module is used to simulate the glacier runoff data. The simulation results are verified by the site measured data to enhance the quality control. Data indicators include: Glacier runoff (rate of glacier runoff:%), total runoff (mm / a), snow runoff (rate of snow runoff:%), and rainfall runoff rate (rainfall runoff rate:%).
WANG Shijin
The data involved three periods of geodetic glacier mass storage change of three Rongbuk glaciers and its debris-covered ice in the Rongbuk Catchment from 1974-2016 (unit: m w.e. a-1). It is stored in the ESRI vector polygon format. The data sets are composed of three periods of glacier surface elevation difference between 1974-2000,2000-2016 and 1974-2006, i.e. DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000). DH2006-1974 was surface elevation change between ALOS/PRISMDEM(PRISM2006) and DEM1974, i.e. the DEM1974 was subtracted from PRISM2006, DH2006-1974 =PRISM2006 – DEM1974. The PRISM2006 was generated from stereo pairs of ALOS/PRISM on 4 Dec. 2006. The earlier historical DEM (DEM1974, spatial resolution 25m) was derived from 1:50,000 topographic maps in October 1974(DEM1974,spatial resolution 25m). The uncertainty in the ice free areas of DHPRISM2006-DEM1974 was ±0.24 m a-1. DHSRTM2000-DEM1974(DH2000-1974)was surface elevation change between SRTM DEM(SRTM2000) and DEM1974. The uncertainty in the ice free areas of DHSRTM2000-DEM1974 was ±0.13 m a-1. DHASTER2016-SRTM2000(DH2016-2000)was the surface elevation change between ASTER DEM2016 and SRTM DEM(SRTM2000). The uncertainty in the ice free areas of DHASTER2016-SRTM2000 was ±0.08 m a-1. Glacier-averaged annual mass balance change (m w.e.a-1) was averaged annually for each glacier, which was calculated by DH2006-1974/DH2000-1974/DH2016-2000, glacier coverage area and ice density of 850 ± 60 kg m−3. The attribute data includes Glacier area by Shape_Area (m2), EC2000-1974/EC2016-2000/EC2006-1974, i.e. Glacier-averaged surface elevation change in each period(m a-1), MB2000-1974/ MB2016-2000/MB2006-1974, i.e. Glacier-averaged annual mass balance in each period (m w.e.a-1), and MC2000-1974/ MC2016-2000/MC2006-1974,Glacier-averaged annual mass change in each period(m3 w.e.a-1), Uncerty_EC is the maximum uncertainty of glacier surface elevation change(m a-1)、Uncerty_MB, is the maximum uncertainty of glacier mass balance(m w.e. a-1),Uncerty_MC, is the maximum uncertainty of glacier mass change(m3w.e. a-1)。 MinUnty_EC,is the minimum uncertainty of glacier surface elevation change,MinUnty_MB,is the minimum uncertainty of glacier mass balance(m w.e. a-1),MinUnty_MC is the minimum uncertainty of glacier mass change(m3 w.e. a-1.The data sets could be used for glacier change, hydrological and climate change studies in the Himalayas and High Mountain Asia.
YE Qinghua
The data involved geodetic glacier mass change of 71pieces of glaciers during 2000-2014 in the east of the Yigongzangbu, Southeast Tibetan Plateau. It is stored in the ESRI vector polygon format.Glacier-averaged mass balance (m w.e.a-1) was calculated by the surface elevation difference between 2000-2014 ( Dh2000-2014)、glacier coveraged vector data (CGI2/TPG1976/RGI6.0) and ice density of 850 ± 60 kg m−3. Dh2000-2014 is obtained from surface elevation change by D-InSAR technique from a pair of TSX / TDx SAR images on February 7, 2014 and SRTM DEM. CGI2/TPG1976/RGI6.0 were used to extract glacier boundary and GLIMS-ID. SRTM DEM is the reference DEM and datum DEM with spatial resolution 30m. The attribute data includes GLIMS-ID, Area,EC_m_a-1,,MB_m w.e.a-1, MC_m3 w.e.a-1, MC_Gt.a-1, Uncerty_EC, Uncerty_MB, UT_MCm3w.e. a-1. Respectively, EC_m_a-1,,is the glacier-averaged annual elevation change during 2000-2014(m a-1),MB_m w.e.a-1, is glacier-averaged annual mass balance during 2000-2014(m w.e.a-1), MC_m3 w.e.a-1, is glacier-averaged annual mass change during 2000-2014 (m3 w.e.a-1), MC_Gt.a-1,is glacier-averaged annual mass change during 2000-2014 (Gt.a-1)Uncerty_EC is the uncertainty of glacier surface elevation change(±m a-1)、Uncerty_MB ,is the uncertainty of glacier mass balance(±m w.e. a-1),UT_MCm3w.e. a-1, is the uncertainty of glacier mass change(±m3w.e. a-1)。The data sets could be used for glacier change, hydrological and climate change studies in the southeast of Tibetan Plateau.
YE Qinghua
The medium-resolution MODIS river and lake ice phenology data set in the high latitudes of the northern hemisphere from 2002 to 2019 is based on the Normalized Difference Snow Index (NDSI) data of the Moderate Resolution Imaging Spectroradiometer(MODIS). Daily lake iceextent and coverage under clear-sky conditions was examined byemploying the conventional SNOWMAP algorithm, and thoseunder cloud cover conditions were re-determined using the temporal and spatial continuity of lake surface conditions througha series of steps.The lake ice phenology information obtained in this dataset was highly consistent with that from passive microwave data at an average correlation coefficient of 0.91 and an RMSE value varying from 0.07 to 0.13.
QIU Yubao
Lake ice is an important parameter of Cryosphere. Its change is closely related to climate parameters such as temperature and precipitation, and can directly reflect climate change. Therefore, lake ice is an important indicator of regional climate parameter change. However, due to the poor natural environment and sparsely populated area, it is difficult to carry out large-scale field observation, The spatial resolution of 10 m and the temporal resolution of better than 30 days were used to monitor the changes of different types of lake ice, which filled in the blank of observation. The hmrf algorithm is used to classify different types of lake ice. The distribution of different types of lake ice in some lakes with an area of more than 25km2 in the three polar regions is analyzed by time series to form the lake ice type data set. The distribution of different types of lake ice in these lakes can be obtained. The data includes the sequence number of the processed lake, the year and its serial number in the time series, and vector The data set includes the algorithm used, sentinel-1 satellite data, imaging time, polar region, lake ice type and other information. Users can determine the change of different types of lake ice in time series according to the vector file.
TIAN Bangsen QIU Yubao
The data set involved geodetic annual glacier-averaged mass balance and mass change data atMt.Xixiabangma areasin the Himalayas from 1974 to 2017. It is stored in the ESRI vector polygon format and is composed of two periods, which includes surface elevation difference between 1974-2000 (DH1974-2000, from KH-9 DEM1974 and SRTM DEM2000), surface elevation difference between 2000-2017(DH2000-2017, by DinSAR techniquesfrom SRTM DEM2000 and TSX/TDX data in 2017). KH-9 DEM is a DEM of the study area in 1974, which was generated from three scenes of optical stereo pairs from KH-9. Geodetic glacier mass change was calculated by DH above, glacier cover vector data from TPG1976/CGI2/RGI6.0 with ice density of 850 ± 60 kg m−3. The attribute data included: GLIMSId means the glacier code from GLIMS data base, Area(km2)is the glacier area by km2, area_m2 is glacier area by (m2), the glacier name, EC74_2000, the surface elevation change rate from 1974 to 2000(m a-1), EC00_2017, the surface elevation change rate from 2000 to 2017 (m a-1), MB74_2000, the geodetic glacier mass balance between 1974 and 2000(m w.e. a-1),MB00_2017, the geodetic glacier mass balance between 2000 and 2017(m w.e. a-1).MC74_2000, the geodetic glacier mass change from 1974 to 2000 (m3w.e. a-1), MC00_2017, the geodetic glacier mass change from 2000 to 2017(m3 w.e. a-1). Ut_EC74_00 is the uncertainty of glacier surface elevation change(m a-1) in 1974-2000、Ut_MB74_00, is the uncertainty of glacier mass balance for each glacier(m w.e. a-1)in 1974-2000,Ut_MC74_00, is the uncertainty of glacier mass change for each glacier(m3w.e. a-1)in 1974-2000. Ut_EC00_17,is the uncertainty of glacier surface elevation change in 2000-2017(m a-1),Ut_MB00_17,is the uncertainty of glacier mass balance for each glacier in 2000-2017(m w.e. a-1),Ut_MC00_17 is the uncertainty of glacier mass change for each glacier in 2000-2017(m3 w.e. a-1).This data set is used for the study glaciers melting and its hydrological effects in the Central Himalayas.It also could be used in studies of climatic change and disasters research in the Himalayas.
YE Qinghua