In this study, an algorithm that combines MODIS Terra and Aqua (500 m) and the Interactive Multisensor Snow and Ice Mapping System (IMS) (4 km) is presented to provide a daily cloud-free snow-cover product (500 m), namely Terra-Aqua-IMS (TAI). The overall accuracy of the new TAI is 92.3% as compared with ground stations in all-sky conditions; this value is significantly higher than the 63.1% of the blended MODIS Terra-Aqua product and the 54.6% and 49% of the original MODIS Terra and Aqua products, respectively. Without the IMS, the daily combination of MODIS Terra-Aqua over the Tibetan Plateau (TP) can only remove limited cloud contamination: 37.3% of the annual mean cloud coverage compared with the 46.6% (MODIS Terra) and 55.1% (MODIS Aqua). The resulting annual mean snow cover over the TP from the daily TAI data is 19.1%, which is similar to the 20.6% obtained from the 8-day MODIS Terra product (MOD10A2) but much larger than the 8.1% from the daily blended MODIS Terra-Aqua product due to the cloud blockage.
ZHANG Guoqing
The Qinghai-Tibetan Plateau (QTP), the largest high-altitude and low-latitude permafrost zone in the world, has experienced rapid permafrost degradation in recent decades, and one of the most remarkable resulting characteristics is the formation of thermokarst lakes. Such lakes have attracted significant attention because of their ability to regulate carbon cycle, water, and energy fluxes. However, the distribution of thermokarst lakes in this area remains largely unknown, hindering our understanding of the response of permafrost and its carbon feedback to climate change.Based on more than 200 sentinel-2A images and combined with ArcGIS, NDWI and Google Earth Engine platform, this data set extracted the boundary of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau through GEE automatic extraction and manual visual interpretation.In 2018, there were 121,758 thermokarst lakes in the permafrost area of the Qinghai-Tibet Plateau, covering an area of 0.0004-0.5km², with a total area of 1,730.34km² respectively.The cataloging data set of Thermokarst Lakes provides basic data for water resources evaluation, permafrost degradation evaluation and thermal karst study on the Qinghai-Tibet Plateau.
CHEN Xu, MU Cuicui, JIA Lin, LI Zhilong, FAN Chenyan, MU Mei, PENG Xiaoqing, WU Xiaodong WU Xiaodong
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
Huabiao Zhao
This data is the hydrological data of kuzhan hydrological station in the middle reaches of the Xier river. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 2, 2019 to December 5, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m) Site location: 40 ° 17 ′ 38 ″ n, 69 ° 40 ′ 18 ″ e, 320m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. After restart, the first data is 0, resulting in the hourly average value of 0. On December 5, 2019, the power supply will return to normal after transformation 6、 There are some missing and - 8.191mm abnormal data in rainfall data, which should be eliminated and explained. Data missing 4.10-5.3 data, supplemented, - 8.191mm, similar abnormal data has been marked
HUO Wen, SHANG Huaming
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
The flood distribution data of historical streams and rivers in Qinghai Tibet scientific research area include longitude and latitude, location of occurrence, basic triggering type, date, damage and other attribute information. Data source: survey statistics of disaster investigation department. On the basis of the original data, the necessary data quality control. According to the type description of the original data, the main triggering factors, the location of the occurrence, combined with the 30 meter foundation terrain, the flood type is analyzed and divided. The data can be used as a reference for the analysis of historical flood disasters. The data format is point vector SHP format, which can be directly opened with ArcGIS. The data can be used for flood risk analysis in the corresponding area of the Qinghai Tibet Plateau.
WANG Zhonggen
(1) Data content: daily variation of water level of Kalakuli lake from 2011 to 2019, the coordinates of observation points are 75.03 ° e, 38.43 ° N and 3670m above sea level. (2) Data source and processing method: hobo pressure type automatic water level gauge (u20-001-01) was used, and the recording frequency was 30 minutes. After eliminating the wrong data and abnormal values, the daily change data of water level is obtained by calculation. (3) Data quality description: due to the destruction of the scale in winter, the data is based on the annual observation. Due to the influence of human factors in construction, the data in some periods are missing. () data application prospect: the data can be applied to the research fields of Lake hydrology and hydrological process in high cold region.
XIE Ying
The data set is measured by YSI exo2 water quality multi parameter measuring instrument on the Bank of middle lake of Ranwu lake from April to November every year from 2014 to 2020. The sampling interval is 0.25s-1s. The data is the average value after the instrument is stabilized. The sampling geographic coordinates are: longitude 96.795296, latitude 29.459066, altitude 3925m. The measurement parameters are water temperature, conductivity, dissolved oxygen and turbidity, and the specific parameter unit is indicated in the meter. Data culling part of the obvious outliers, the document is empty, please pay attention to the use. The data will be updated from time to time, and can be used by researchers of water chemistry, Lake microorganism or lake physical and chemical properties in Ranwu Lake Basin.
LUO Lun
This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.
LUO Lun
This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal
HUO Wen, SHANG Huaming
The long-time series data set of extreme precipitation index in the arid region of Central Asia contains 10 extreme precipitation index long-time series data of 49 stations. Based on the daily precipitation data of the global daily climate historical data network (ghcn-d), the data quality control and outlier elimination were used to select the stations that meet the extreme precipitation index calculation. Ten extreme precipitation indexes (prcptot, SDII, rx1day, rx5day, r95ptot, r99ptot, R10, R20) defined by the joint expert group on climate change detection and index (etccdi) were calculated 、CWD、CDD)。 Among them, there are 15 time series from 1925 to 2005. This data set can be used to detect and analyze the frequency and trend of extreme precipitation events in the arid region of Central Asia under global climate change, and can also be used as basic data to explore the impact of extreme precipitation events on agricultural production and life and property losses.
YAO Junqiang, CHEN Jing, LI Jiangang
Soil moisture is one of the core variables in the water cycle. Although its variation is very small, for a precipitation process, soil moisture directly determines the transformation of precipitation into evaporation, runoff and groundwater, which is very important to finely simulate spatial-temporal dynamics of various variables in hydrological process and to accurately estimate water inflow in the upper reaches of Heihe River. This dataset includes soil moisture and temperature data observed by 40 nodes from July 2013 to December 2017. Each node in Babao River Basin has soil moisture observation at depth of 4cm and 20cm; some nodes also include observations at depth of 10 cm. The data observation frequency is 1 hour. The dataset can provide ground -based observations for hydrological simulation, data assimilation and remote sensing verification.
JIN Rui, KANG Jian
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2018, collected by lysimeters, which are located at 115.788 E, 40.349 N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g.2018-6-10 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin, ZHU Zhongli, XU Ziwei
This dataset includes the observation data from 01 Jan. 2019 through 31 Dec. 2019, collected by lysimeters, which are located at 115.788E, 40.349N and 480 m above sea level, near the Huailai Station in East Garden Town, Huailai County, Hebei Province. The land cover around the station was maize crop. The weighable lysimeter was built by UMS GmbH (Germany), with a surface area of 1m2, and a soil column of 1.5 m high. The original data sampling frequency was 1 Hz, and then averaged to 10min for distribution. The precision of the weighing data is 10g (equivalent to 0.01mm). During the crop growth period, a lysimeter is covered by bare soil and another one is covered by planted maize. The soil moisture, temperature and soil water potential sensors are installed both inside and outside of the lysimeter to ensure that the water cycle in the soil column is consistent with that of the field. Different sensors are located at different depths: 5, 50, 100 cm for soil temperature sensors, and 5, 10, 30, 50, 100 cm for soil moisture sensors, and 30 and 140cm for soil water potential sensors (the tensionmeter here can also measure soil temperature at 30, 140 cm). The soil heat flux plates in both lysimeters are buried at 10cm depth. The data processes and quality control according to: 1) ensuring there were 144 data every day, the lost data were replaced by -6999; 2) deleting the abnormal data; 3) deleting the outlier data; 4) keeping the consistent date and time format (e.g. 2019-01-01 10:30). The distributed data include the following variables: Date-Time, Weight (I.L_1_WAG_L_000(Kg), I.L_2_WAG_L_000(Kg)), Drainage Weight (I.L_1_WAG_D_000(Kg), I.L_2_WAG_D_000(Kg)), Soil Heat Flux (Gs_1_10cm, Gs_2_10cm) (W/m2), Soil Moisture (Ms_1_5cm, Ms_1_10cm, Ms_1_30cm, Ms_1_50cm, Ms_1_100cm, Ms_2_5cm, Ms_2_10cm, Ms_2_30cm, Ms_2_50cm, Ms_2_100cm) (%), Soil Temperature (Ts_1_5cm , Ts_1_30cm, Ts_1_50cm, Ts_1_100cm, Ts_1_140cm, Ts_2_5cm , Ts_2_30cm, Ts_2_50cm, Ts_2_100cm, Ts_2_140cm) (C), Soil Water Potential (TS_1_30(hPa), TS_1_140(hPa), TS_2_30(hPa), TS_2_140(hPa)). The format of datasets was *.xls.
LIU Shaomin, ZHU Zhongli, XU Ziwei
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2019. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset obtained from an observation system of Meteorological elements gradient of Huailai station from January 1 to December 31, 2018. The site (115.7923° E, 40.3574° N) was located on a cropland (maize surface) which is near Donghuayuan town of Huailai city, Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (in the box), rain gauge (3 m, south of tower), four-component radiometer (4 m, south of tower), two infrared temperature sensors (4 m, south of tower, vertically downward), photosynthetically active radiation (4 m, south of tower, vertically upward), soil heat flux (3 duplicates, -0.06 m), a TCAV averaging soil thermocouple probe (-0.02, -0.04 m), soil temperature profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) for data processing) in the Citation section.
LIU Shaomin, XIAO Qing, XU Ziwei, BAI Junhua
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2019. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Huailai station. There were two types of LASs: German BLS450 and zzLAS. The observation periods were from January 1 to December 31, 2018. The site ( (north: 115.7825° E, 40.3522° N; south: 115.7880° E, 40.3491° N) was located in the Donghuahuan town of Huailai city, Hebei Province. The elevation is 480 m. The underlying surface between the two towers contains mainly maize. The effective height of the LASs was 14 m; the path length was 1870 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion. (2) Data were rejected when the demodulation signal was small. (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements; missing flux measurements from the BLS450 were filled with measurements from the zzLAS. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.
LIU Shaomin, XU Ziwei
The data set records the surface water quality assessment data set of the Yangtze River mainstream (2008.3-2020.6). The data are collected from Yushu ecological environment bureau. The data set contains 226 files, including: water quality assessment of surface water in June 2010, water quality assessment of surface water in July 2010, water quality assessment of surface water in August 2010, water quality assessment of surface water in August 2011, and water quality assessment of surface water in April 2012. Each data table has seven fields: Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Department of Ecology and Environment of Qinghai Province
The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture